
Aardvark Embedded Solutions Ltd does not accept liability for any errors or omissions contained within this
document. Aardvark Embedded Solutions Ltd shall not incur any penalties arising out of the adherence to,
interpretation of, or reliance on, this document. Aardvark Embedded Solutions Ltd will provide full support for this
product when used as described within this document. Use in applications not covered or outside the scope of
this document may not be supported. Aardvark Embedded Solutions Ltd. reserves the right to amend, improve
or change the product referred to within this document or the document itself at any time.

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 2 of 77

Table of Contents

Table of Contents ... 2
Revision History ... 6

Introduction .. 7
Purpose of Document ... 7
Intended Audience .. 7
Associated Document(s) ... 7
Naming ... 7

Supported Facilities .. 8
Version Numbering ... 8
Document Structure .. 8

Paylink .. 9
Installation ... 9
Money representation ... 9

Acceptance ... 9
Payment .. 9

Payout Function.. 9
PaySpecific Function (1.12.6) ..10
Processing during payout. ..10
End of payout processing. ..11

Auxiliary Items ... 11
Switch inputs ..11
Outputs ...11
Meters ...12

System Structure .. 12
USB Connection ...12

Paylink Lite .. 13
Original (old) Paylink Lite ...13

Paylink Lite V2 ccTalk ... 13
Paylink MDB Lite ... 13

Paylink Lite V2 RS232 .. 13
Paylink Lite Aux units .. 14

Troubleshooting .. 14
Supported Peripherals .. 15
Coin / Note Acceptor Usage Details ... 17

Token Handling (Coin Ids) (1.11.x) ... 17
Dual Currency Handling (Coin Ids) (1.11.x) .. 17

Coin Routing. .. 18
Route coins to a general cash box ...18
Route specific coins to a specific cash box. ...18
Route coins to a hopper until it is full then route it to a coin cash box.18
Paylink Routing - Flow Diagram ...19

Control of Motorised Acceptors ... 20
ccTalk bulk coin acceptor (1.11.3)..20
BCR / CR10x coin recyclers (1.11.5) ...20

MDB changer / BCR / CR10x / CLS recycler / SmartHopper support. 21
MDB Payout ...21
MDB tube level monitoring. ..22

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 3 of 77

Read out of Acceptor Details (1.11.x) ... 23

Coin / Note Dispenser Usage Details ... 24
Dispenser Power Fail support. .. 24
Detailed Device Support. .. 24

Abandoning a payout in progress (1.11.3) ...24
Control of unwanted bill payout (1.11.3) ..24

Combi Hopper Support. .. 24
Read out of Dispenser Details (1.11.x) ... 25

Complex Dispenser (Recycler) Operations (1.12.3) .. 26
Introduction ... 26
Security ... 26

DES Key Exchange ..26
Component Identity ... 27

Routing ... 27
Dispenser Destination Initialisation ..27
Routing Control...27

Bill Recycler Emptying .. 28
Full Dump ...28
Partial Dump ...28

Payout Progress ... 30
Cancelling Payout ..30
Notification of progress ...30

Power Fail ... 30
Temporary power interruption ..30
Full power Failure ...30
Unpaid Bills ...31

Device Specific Functionality .. 32
MEI BNR ...32
SCR Advance (EBDS) ..32
SCR Advance Mixed Denomination Recycler (1.12.12) ..33
JCM Vega (cctalk DES) & Innovative NV11 Recycler (DES) ...33
ICT BR2300 (Not available with DES)..34
MDB Note recycler ...34
Innovative NV200 Recycler / SmartPayout (DES) ...35
Innovative SmartHopper coin recycler ...35
JCM UBA & iPro Recycler ..35
F56 / F53 Bill Dispenser ...36
F56 / F53 Jams...36
Cashcode B2B-300 ..36
Cashcode B2B-60 ..37
Merkur 100 ...37

Extended Escrow (1.12.6) .. 38
Introduction ... 38

Functionality .. 38
Accepting Notes ...39
Returning Notes..39
Keeping Notes ..39

Operation .. 40
Abnormal Situations .. 41

Cashless Processing ... 42
Background ... 42
Processing .. 43

Credit Card Sequencing ...43

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 4 of 77

Credit Input Sequencing ...43
Credit Output Sequencing ..43
Ticket Sequencing ..44

Abnormal Processing .. 44
MDB Cashless processing .. 44

MDB Cashless Credit ...45
Example Cashless Transaction ... 46

Meters / Counters ... 47
Mechanical Meters (1.12.4) ..47

Events (Faults / Auditing) .. 48
Introduction ... 48
cctalk coin processing ... 49

Fault Events ..49
Coin Events ..49

cctalk note processing .. 50
Fault Events ..50
Note Events ..50

cctalk hopper processing .. 51

ID-003 note processing ... 53
Fault Events ..53

CCNet note processing ... 54
Fault Events ..54

EBDS (SC/SCR) note processing ... 55
Fault Events ..55

BCR / CR10x Fault Processing ... 56
CLS Fault Processing ... 59

F53/F56 Fault Processing ... 59
Firmware reprogramming ... 60

Command Line Options .. 61
Limitations ... 61

Milan / Paylink Driver Program Configuration ... 62
Driver Parameters ... 62
Multiple Paylink Unit Support. ... 63

Unit Identification ..63
Operating modes .. 63
External Paylink Peripheral Specification .. 64
The Configuration File ... 65
DRIVER Details .. 66
SYSTEM Details ... 67

PROTOCOL Details .. 68
CCTALK Device Definition .. 69

CCNet Device Definition ... 72
MDB Device Definition .. 73
ID003 Protocol .. 73
EBDS Protocol .. 74
MEIBNR Protocol .. 74

TFLEX | T-FLEX Protocol ... 74
CX25 Protocol ... 75
CLS Protocol ... 75

Gen2 Protocol ... 75

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 5 of 77

F56 Protocol .. 75

MFS Protocol .. 75
Cassettes .. 75
Original Paylink Definition. .. 76

Disclaimer ... 77

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 6 of 77

Revision History

Version Date Author Description

1.0 25
th
 Feb 13 D Bush Created from “Configurable Driver” Manual

1.1 24 June 2013 D Bush Update for Precise pay and Extended Escrow

1.2 1 August 2013 D Bush Updated for SmartHopper support

1.3 12 December 2016 D Bush 1.12.8 updates

1.4 11 September 2019 D Bush 1.12.9 & 1.12.10 updates

1.5 29 January 2020 D Bush 1.12.11 updates

1.6 16 March 2020 D Bush Added SCR Mixed Denomination Recycler details

1.7 16 March 2022 D Bush Cashless and General updates

1.8 02 August 2023 D Bush MDB and auxiliary Lite and general updates

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 7 of 77

Introduction

Purpose of Document

This document describes the structure of a system using the AES Intelligent Money Handling
Equipment Interface (Milan / Paylink), as seen by the person designing and setting up the system

Intended Audience

The intended audience of this document is the system engineer or programmer who is configuring
the system that will be using Paylink.

Associated Document(s)

This document is one of a pair that together cover creating and using a Paylink system. This
document is written for the use of the person who is possibly not a programmer, but is concerned
with designing and setting up the system centred on a Paylink unit. That document covers and the
way in which such units can be controlled and the configuration settings that are used to configure
the system.

The companion document “Milan / Paylink Application Program Interface Manual” for the use of
programmers and covers the details of how to write the programs that interface to Paylink.

Naming
The system described here has a few names. This section attempts to explain them.

AES Aardvark Embedded Solutions - us.
IMHEI Intelligent Money Handling Interface Equipment. This was the original name for the

project,
This was however difficult to say, and so was replaced in common use by Milan. It remains
in the names in of the header files etc.

Milan This was originally the name of the first hardware build. It has however become the name
of the overall project. Most documents from AES talk about Milan to cover the whole family
of products that are used with this API

Paylink This is the name of the USB module. There are at present seven versions of Paylink
hardware
Standard Paylink The original, metal cased version.
Paylink Lite A old, smaller, plastic cased cctalk only version, with a reduced

function set.
uPaylink (Micro Paylink) a PC software only version, for use with Crane PI

USB peripherals.
Paylink Lite V2 A smaller, plastic cased version supporting the full set of

peripherals on a single connector, either cctalk or RS232 together
with 4 input and 4 outputs

Paylink MDB Lite A smaller, plastic cased version supporting the full set of
peripherals on a single MDB connector together with 4 input and 4
outputs

Paylink MDB Aux A version of the MDB Lite with no I/O that does not authorise
Paylink to run

Paylink RS232 Aux A specially programmer USB to RS232 converter that does not
authorise Paylink to run

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 8 of 77

Supported Facilities
It should be noted that this document cover all versions of the Milan / Paylink system.

Where a facility may not be available with the version that you are running, the topic titles are suffixed
with a version indication in brackets

Version Numbering

All AES software releases have a 4 part version number. This is made up from 4 separate fields,
coded as:
L L - P P - V V - M M
where:
M M Is a minor release, representing an upgrade in facilities or bug clearance, but where the

application code will remain the same (both source and executable).
V V is a significant release, where the application will at a minimum need to be re-compiled, and

where facilities may hay have changed to the point where the application code needs to
change.

P P Is a product code. This is 1 for Paylink and is 25 for DES Paylink
L L Is the release level. This is a code, rather than a level, and has meaning as follows:

4 is a full release, and should never contain any errors or omissions. These releases happen
relatively rarely and a full history of the code is maintained. A code starting 4 uniquely
identifies a particular build of the software.

3 is a beta release. This may contain errors as it has not been fully regression tested, but it is
intended to be sufficiently stable that development, or even live running is possible. Again, a
code starting 3 uniquely identifies a particular build of the software.
Normally the full release of a version will be almost identical to the beta release.

2 is an alpha release. These are only usually issued at the start of a major version. They
should be stable and bug free, but are not fully tested, especially they will only have had
minor regression testing. This release is to enable developers to “get started” with a new set
of facilities. Again, a code starting 2 uniquely identifies a particular build of the software.

1 is an engineering release. These are generated during our internal development process,
and are occasionally released to customers is response to specific requests. A build code of
1 can only be distinguished by the date / time stamp embedded in the code, and no internal
record is kept of the items / changes that have gone into such a build.
Note: These are always part of the main line development, any new functionality they
support is guaranteed to part of the full release with the same VV & MM.

Document Structure

This document is divided into three overall parts:
Concepts
Where the document describes the ideas behind how Paylink works
Details
Where the specifics of how Paylink handles peripherals and situations are described
Configuration
Which defines the configuration file (which is essential to Paylink operation).

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 9 of 77

Paylink

Installation
All aspects of actually installing Paylink software on a target PC are described in the companion
Application Program Interface document.

Money representation
Within Paylink all monetary figures are in 32 bit integers, which represent an amount of money in
terms of a single base unit. This would typically be pence or cents, but could be yen etc.

Where note acceptors are reading in high value notes, the acceptor will typically provide a conversion
factor, which enables Paylink to convert the notes. A “normal” dollar / euro acceptor will provide a
conversion factor of 100.

Acceptance
All money acceptance is handled by means of updating total counters. Before starting operation, the
application notes the current value of all the counters in which it is interested, and then monitors
these counters for changes.

This serves to remove all needs for queuing and for spotting events from the system - there is no way
that application can fail to have accurate information.

For the simplest application, there is a single total of all credit received. This actually totals the credit
received for the life of the unit, and hence can also be used for auditing / security purposes.

For a more complex understanding of the money received, Paylink provides a block of information for
each acceptor. As well as being able to use this block to disable specific coins / notes it also monitors
the insertion of each coin / note. For each coin / note the total number accepted since the Paylink unit
was reset is reported.

Payment
Paylink provides two similar mechanisms for paying currency out from dispensers to the users of the
system.

The original system used the Payout() function and with this the application specified the total
amount, and Paylink would attempt to pay out sufficient of the available notes and coins to total the
specified amount.

The new (1.12.6) precise pay system uses the SetDispenseQuantity() and PaySpecific() functions
to pay out a precisely specified set of notes and coins.

Payout Function

This method of paying money out using a Paylink is by calling the Payout() function, which takes a
value in Paylink base units.

Paylink maintains a count of the total of all credit paid out for the life of the unit. This total is updated
continuously as the process of paying money out proceeds, and can be used to check the amount of
credit that has been paid out in the event of a payout being in progress when power is lost.

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 10 of 77

A Paylink is connected to one or more dispenser devices, which can be used to achieve this payout.
Internally Paylink holds these devices in descending order of value and when a pay command is
issued it works down this list, paying as many base units as possible from each device in turn.

Each device request will be successful, or will result in nothing being paid, or will pay less than the
requested amount.

Where either nothing or less than the requested amount is paid then Paylink will automatically issue
another request on that device for the remainder. When two successive requests have resulted in
nothing being paid, then Paylink abandons the use of that device for this command, and will attempt
to pay the outstanding balance from lower value.

The application can exert limited control over progress of a payment by disabling specific dispensers,
which has the effect of causing the dispenser to be ignored when selecting which units to use for a
payment.

PaySpecific Function (1.12.6)

The alternative method of paying money out using a Paylink is by calling the SetDispenseQuantity()
function, once for each dispenser that is to be used for the payout to specify how many coins / notes
are required from that..

When all the required calls have been made, a single call to the PaySpecific() function will Paylink to
start processing the payout.

The call to the PaySpecific() function, will return the total amount to be paid in Paylink base units, in
many ways subsequent processing is the same as a that triggered by a Payout() call for this value.

Internally Paylink holds these devices in descending order of value and it works down this list, paying
as many base units as possible from each device in turn.

Each device request will be issued and the result used to update the Status of the relevant
Dispenser.

If the application disables specific dispensers, this will still have the effect of causing the dispenser to
be ignored when it is reached in this processing.

Processing during payout.

As money is paid out during either process, Paylink updates the total of all credit paid out as reported
by CurrentPaid().

Specifically, this value will increment as coins / notes are delivered, even though the
LastPayStatus() is still reporting PAY_ONGOING. For a note dispenser this value increments as
soon as the note is accessible, even though the payout doesn't terminate until it has been removed.

Whilst either payment command is being processed, the status of the system as reported by
LastPayStatus() is PAY_ONGOING - when the entire payout process is complete it will either report
PAY_FINISHED (indicating the value request has been paid out) or it will report the last failure code
that was processed.

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 11 of 77

End of payout processing.
You detect the process completing using LastPayStatus(). If Paylink succeeded in paying out the
total requested amount, you get a status of PAY_FINISHED. If not then Paylink will report the status
returned by one of the dispensers that failed.

The amount actually paid out can be obtained by comparing the current lifetime credit from
CurrentPaid() with that immediately before the payout started, the increment in will reflect the amount
delivered.

The application can read the details on each dispenser from Paylink. The information available
includes the value of the money in the dispenser device, the lifetime count of money paid from this
dispenser as retrieved from the hardware unit, the result of the last attempt to pay out using this
dispenser and if available the count of the units of money currently in the dispenser. It is possible that
a successful payout still results in an individual dispenser returning an error status.

The values returned the DISPENSER_BLOCK are as follows:
Status - this is usually the result of the last payout attempt - even if that was a "long" time ago. It also
can return PAY_US if the unit is no longer connected.
Count - increases in this value match the number of notes that have been delivered / taken.
CoinCount - decrements in this match the number of notes that have been delivered or stacked or
"gone missing".

Where Paylink is not actively running the payout process when a note is delivered, this can be
detected by an increment in Count (as above). This value is preserved over Paylink restarts / resets
so can be used by the application to spot this. In addition an event of
IMHEI_NOTE_DISPENSER_UPDATE is queued to the event system.

For note recyclers, notes no longer in the recycler unit can be detected by a decrement in the value
of CoinCount, again this value is preserved over Paylink restarts / resets - a decrement of this without
a corresponding increment in Count represents a note that has gone to the cashbox.

Auxiliary Items

Switch inputs
Standard Paylink provides 16 “open collector” style inputs, each of which has a pull up resistor to 3V3
and can discriminate between an open input, and one that has been grounded using a switch or
transistor.

These are monitored and “debounced” on a millisecond timeframe, and two counts are made
available to the application for each switch, one for the number of close, and one for the number of
opens. Both counts are zero when the unit is reset - an application can monitor the count of closes by
looking at one or the other, and can determine the current state of the switch by testing if they are
equal.

Paylink Lite V2 and Paylink MDB Lite provide 4 inputs that work in an identical fashion.

Outputs
Standard Paylink provides 16 “open collector” style output, each of which consists of a transistor
which can be operated under application control to connect an external load to ground. The Standard
Paylink board provides an easily accessible source to enable LEDs to be easily connected to these
outputs.

Paylink Lite V2 and Paylink MDB Lite provide 4 outputs that work in an identical fashion.

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 12 of 77

Meters
The final piece of equipment support by Paylink is external meters. Two sorts of meters are
supported:

o A Starpoint SEC meter is run from a dedicated connector which matches pin for pin the
connector on the back of the meter. Paylink provides facilities for reading updating and
controlling all 32 possible counters within the meter unit.

o A number of mechanical / pulse meters can be connected to Paylink’s standard outputs.
There are controlled by the same interface as the SEC meter. Provision is made for
continuing large updates over a power cycle, although the limitations of the way power fails
can lead to the loss of a single pulse.

System Structure
A system that uses a Milan / Paylink unit comprises a user application that communicates via a DLL
to the Milan peripheral handling code, either installed on a standard Paylink unit, or running as a part
of the Driver program.

Either style of system requires a driver program to be running. This is usually a program, “Paylink”,
directly executing the peripheral handling code or communicating over a USB cable to a standard
Paylink. For dome Linux systems this driver program only communicates over a USB to a standard
Paylink and is called AESCDriver.

USB Connection
USB Lead
The Standard Paylink unit is not designed to be added to and removed from a PC, it is designed to
be permanently connected. Any disconnection and reconnect of the lead will at least cause exception
processing, will usually cause a Standard Paylink unit to be reset and may cause the interface
presented to the PC to change drastically.

The system should not be regarded as usable for 20 seconds after a Standard Paylink reset, or for 10
seconds after a USB driver program (re-)start.

USB Driver Program.
The supplied USB driver program Paylink (AESCDriver) has to be run, and should be regarded as a
system service and unconditionally started at system boot.

It is possible to stop and start this program, but that always causes exception processing to be
undertaken as above, and is not recommended. If it is not running and the Paylink unit is plugged in,
then the Paylink units will continually turn their USB interface off and on in attempt to recover USB
communications.

The system should not be regarded as usable for 20 seconds after a Paylink (re)boot, or for 10
seconds after a USB driver program (re-)start.

Paylink.exe runs under Windows where it also supports Paylink Lite 2, Paylink MDB Lite and USB
peripherals made by CPI. On Linux the default driver is AESCDriver for use with a standard Paylink
unit on any Linux system, and Paylink which is provided in a semi compiled form for Intel and
Raspberry Pi based Linux systems.

The expected use of the driver program is that during initial program development, the driver is run
and the program window is referred to in order to monitor and control the connection to the
Milan / Paylink. When the system approaches a live configuration the driver program is run silently
with a log file being produced for incident investigation. Finally, the launch of the driver is placed into
the system start up files, where it should be regarded as a system service and unconditionally started
at system boot.

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 13 of 77

Paylink Lite

Original (old) Paylink Lite
This is a small unit that runs very limited and old cctalk only firmware. It is still supplied by CPI to
legacy customers. There is no configuration and only support for basic peripherals.

Paylink Lite V2 ccTalk
A ccTalk Paylink Lite unit is completely plug compatible with the cctalk connectivity on a standard
Paylink. It has exactly the same USB connector, 6 pin cctalk connector and 12V connector, with
exactly the same auto-resetting fuses on the 12V line and the 24V cctalk line.

The digital I/O is different from the standard Paylink, and features a 20 way connector which provides
the following 5 groups of 4 pins:

 4 digital inputs which are each the same as one of the 16 digital inputs on a standard Paylink

 4 pins connected to ground for use with these inputs

 4 digital outputs which are each the same as the 8 low power outputs on a standard Paylink;
connecting the pin to ground when driven from Paylink.

 4 pins which are pre-wired for an LED, featuring a resistor connecting the pin to the 5V USB
supply; so an LED requires no additional circuitry and can just be connected from here to an
output pin – there is no equivalent of these pins on the Standard Paylink.

 4 pins connected to the 12V supply, for convenience when using higher power outputs –
these are equivalent to the pins on a Standard Paylink.

Paylink MDB Lite
Rather than the limited 3 pin connector of a standard Paylink, the Paylink MDB Lite electronics are
re-designed from the ground up to support MDB in an easy, cost efficient way.

The unit is fitted with the standard 6 way MDB connector, so that peripherals can be plugged directly
into the unit without using any additional cabling.

A high power barrel connector is also fitted to the unit, to easily provide power to the MDB peripherals
without any extra connections.

This connection is actually electrically isolated from the rest of the unit and is not necessary for the
communications to function. In conjunction with the opto-isolation used on most MDB peripherals,
this results in a very low noise system with no connection between the PC and the peripherals.

The 20 pin digital I/O connector on the MDB board is the same as the cctalk unit, except that there is
no access to a 12V supply, so these pins is replaced by direct connections to the USB 5V supply,
through an auto-resetting 500mA fuse.

Paylink Lite V2 RS232
Available only on special order for a system with no cctalk or MDB peripherals, an RS232 Paylink Lite
V2 is available, with the same 20 way I/O connector and a 4 pin microfit connector for the serial
connection.,

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 14 of 77

Paylink Lite Aux units
For configurations that require more than one connection, but where it is desired to still use the Lite
system, auxiliary units are available which can be used in the following ways:

Lite Units in the system cctalk MDB RS232

Base Lite V2 only x

Base MDB Lite only x

Base Lite V2 RS232 only x

Base Lite V2 + Aux MDB x x

Base Lite V2 + Aux RS232 x x

Base MDB Lite + Aux RS232 x x

Base Lite V2 + Aux RS232 & Aux MDB x x x

(An Aux RS232 connection is handled by a specially programmed USB / RS232 converter, an Aux
MDB is a specially programmed MDB Lite, with no I/O)

Paylink Lite is suitable if you use high power outputs, a lot of I/O, or the SEC meter.

Troubleshooting
As detailed below in the configuration section, the Paylink driver program provides for a log file of
limited size to be produced. Where the behaviour of Paylink is unexpected, this file will normally
contain information that allows support personnel to establish precisely what has happened, to
provide advice on how to stop it happening again.

It is therefore strongly advised that all operational systems set the driver up to produce such a log.

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 15 of 77

Supported Peripherals
Paylink supports a wide range of peripherals. Most peripherals connect to the system via a serial
communications cable plugged into a Paylink device, but some are connected directly via USB cable.

Note that hoppers and acceptors from multiple manufacturers support the same cctalk protocol, but
bill recyclers are more variable. Each bill recycler below specifies the protocol with which it can be
driven, a bill acceptor driven on one protocol will probably not be usable on a different one.
Especially, we do not implement a multi-roll cctalk protocol.

Paylink Lite V2, which is available in three models with a single connection that is either cctalk, MDB
or RS232, allows the connection of any supported peripherals that use the connection.

Some peripherals can only be directly connected through a USB socket; this can either be in addition
to either Paylink device, or used with a µPaylink “Dongle”. This is only available for Windows and
Intel or Raspberry Pi Linux systems.

The Standard Paylink unit has insufficient memory space to handle all the peripherals which are now
supported. There are therefore 4 different firmware builds to cover the entire repertoire. The names
on these builds are mostly historical accidents.

This table shows all the peripherals which are supported by the Paylink system, alongside the
firmware build(s) that include them:

 Genoa… InnEbd… Innov… Mcd… USB

Coin Acceptors

All cctalk coin acceptors ✔ ✔ ✔ ✔ ✘
Coin Dispensers / Hoppers

All standard cctalk Hoppers (see below) ✔ ✔ ✔ ✔ ✘

CPI TFlex Coin Dispenser ✔ ✘ ✘ ✘ ✔
CPI CX25 Coin Dispenser ✔ ✘ ✘ ✘ ✔
Innovative SmartHopper in in CC2 (cctalk) mode ✘ ✔ ✔ ✔ ✘

Coin Recyclers
All MDB Coin Changers connected over MDB ✔ ✔ ✔ ✔ ✘

Innovative SmartHopper with attached coin acceptor ✘ ✔ ✔ ✔ ✘

CPI BCRxxx coin recycler ✘ ✘ ✘ ✘ ✔

CPI CRxxx coin recycler ✘ ✘ ✘ ✘ ✔

CPI CLS ✘ ✘ ✘ ✘ ✔

CPI C2 MDB Coin Changer ✘ ✘ ✘ ✘ ✔

CPI CF7000 MDB Coin Changer ✘ ✘ ✘ ✘ ✔
Bill / Note Acceptors

All cctalk Note acceptors ✔ ✔ ✔ ✔ ✘

All ID003 Note Acceptors ✔ ✔ ✔ ✔ ✘

All MDB Note acceptors ✔ ✔ ✔ ✔ ✘

All EBDS Note Acceptors ✔ ✔ ✘ ✘ ✘

All CCNet (CashCode, B2B) Note acceptors ✔ ✘ ✘ ✔ ✘
Bill / Note Dispensers

Fujitsu F53 ✘ ✘ ✘ ✔ ✘

Fujitsu F56 ✘ ✘ ✘ ✔ ✘

MFS series ✘ ✘ ✔ ✘ ✘

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 16 of 77

Bill / Note Recyclers

CPI / MEI EBDS SCR recycler, Normal, MNE and MDR ✔ ✔ ✘ ✘ ✘

CPI / MEI BNR Recyclers (via manufacturers DLL) ✘ ✘ ✘ ✘ ✔

All CCNet (CashCode, B2B) Note recyclers ✔ ✘ ✘ ✔ ✘

JCM UBA, iPro & Vega recyclers on ID003 ✔ ✔ ✔ ✔ ✘

All MDB Note recyclers (on MDB) ✔ ✔ ✔ ✔ ✘

ICT BR2300 Note recycler on cctalk ✘ ✘ ✔ ✘ ✘

Single roll JCM Vega on cctalk ✘ ✔ ✔ ✔ ✘

Innovative Single roll NV11 in cctalk mode ✘ ✔ ✔ ✔ ✘

Merkur MD100 ✘ ✘ ✔ ✘ ✘

Innovative SmartPayout (NV200) in CC2 (cctalk) mode ✘ ✔ ✔ ✔ ✘
Others

Gen 2 ticket printer from FutureLogic ✔ ✘ ✔ ✘ ✘
SEC Electronic Meter ✔ ✘ ✔ ✘ ✘
Electromechanical Meters ✔ ✘ ✔ ✘ ✘

Notes:

1. Where the description is for all peripherals of a type using a specified protocol, it is implied
that the peripheral only uses the standard command set, as defined by the protocol “owner”.

2. Cctalk hoppers are known to have two slightly different command interpretations, that used

by CPI Serial Compact and Universal hopers and that used by Azkoyen Hoppers. This has to
be specified in the configuration file for completely correct operation.
It is possible that there are other hoppers which may have a different interpretation of the
commands.

3. Paylink is known to operate correctly with many different coin and note acceptors on the

MDB, cctalk and ID003 protocols. Apart from the MDB protocols, there is no guarantee that a
given manufacturer’s Bill / Note recycler will use protocol extensions that are known to
Paylink.

4. If you have a requirement for a different mixture of peripherals, please contact us at

Aardvark, it is not difficult to produce firmware with a new combination.

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 17 of 77

Coin / Note Acceptor Usage Details

Token Handling (Coin Ids) (1.11.x)
As tokens do not have a known value, they appear as coins with value zero. The only way for an
application to detect tokens is to use the CurrentUpdates() function to detect activity, and then to

check for increases in the count of the token(s) accepted(Coin.Count).

The index for the coin that holds the count for a particular token can be obtained by searching the
coin array belonging to the acceptor and comparing the coin name (Coin.CoinName) with that of the

token.

Dual Currency Handling (Coin Ids) (1.11.x)
If an acceptor is being used to accept coins or notes of more than one currency, the application can
determine the currency of a specific coin or note by examining the name of the coin
(Coin.CoinName) - usually the characters at the start.

Note: The exact values returned are dependent upon the acceptor manufacturers and hence cannot
be given here.

ccTalk This contains up to eight characters as returned by the Request Coin Id (184)
command.

ID-003 This contains a representation of the three bytes as returned by the Get Currency
Assignment (0x8A) command. The first three characters are the decimal value for
country code, then a ‘/’, then the base value as a decimal number, followed by a ‘^’,
then the count of extra zeros as a decimal number.

MDB All MDB coins are the same currency. The coin name contains the Value as a decimal
number, followed by a * followed by the (constant) Scaling as a decimal number

CCNet This is set from the Get Bill Table (41H) command.
The string is the 3 chars from the 3 byte “Country Code” followed by the decoded
value as a decimal number.

EBDS This is set from the reply to the Extended Note Specification message(0x02).
The orientation character is always removed from the reply.
EBDS acceptors can return a large number of identities (and Paylink can be
configured to process them).
Where Paylink can process all the identities the remaining 14 characters are used as
the name, otherwise Paylink uses the 1st 10 characters of the name to merge the
large number of identities into a smaller number.

MEIBNR These are taken from the DenominationList, the Currency Code, Value and Variant
are concatenated to give the string used.

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 18 of 77

Coin Routing.

Paylink provides facilities to partially automate the externally provided routing of coins to fill one or
more coin dispensers and the cash box. This enables Paylink to accurately change the routing in the
potentially very small delay between one coin and the next.

These facilities only apply to coins. The routing for notes is completely left to the application, as there
are no time constraints.

There are 3 routing techniques:

 Route coins to a general cash box.

 Route specific coins to a specific cash box.

 Route specific coins to a dispenser until it is full then route it to a coin specific cash box.

There are 3 settings for each coin that are important:

 Coin.Path The path to the coin specific hopper.

 Coin.DefaultPath The path to the coin specific cash box.

 Coin.PathSwitchLevel When Coin.PathCount reaches Coin.PathSwitchLevel coins
are routed to the coin cash box.

Route coins to a general cash box
 Set all coin paths to the desired route.

e.g. General Cash box on route 4.

 Path 4 for all coins

 DefaultPath 0 for all coins

 PathSwitchLevel 0 for all coins

Route specific coins to a specific cash box.
 Set Coin.Path for each coin that is routed to a specific cash box.

 The other 2 coin settings are zero.

e.g. General Cash box on route 4, coins 1 and 2 have separate cash boxes on routes 5 and 6.

 Path 5 for coin 1, 6 for coin 2 and 4 for all other coins

 DefaultPath 0 for all coins

 PathSwitchLevel 0 for all coins

Route coins to a hopper until it is full then route it to a coin cash box.
 Set Coin.Path to the hopper routing for each coin that is routed to a hopper

 Set Coin.DefaultPath to the cash box route for each coin that is routed to a hopper. This
must be non-zero

 Set Coin.PathSwitchLevel to the Coin.PathCount value at which the hopper will become full.
This must be non-zero

e.g. General Cash box on route 4, coin 1 goes to a hopper on route 1 and a cash box on route 2.
Coin.PathCount is 100 and there is space for 300 more coins in the hopper.

 Path 1 for coin 1, 4 for all other coins

 DefaultPath 2 for coin 1, 0 for all other coins

 PathSwitchLevel 400 for coin 1, 0 for all other coins

When coins are routed to the dispenser (via the Coin.Path route) the variable Coin.PathCount is
incremented. When PathCount reaches PathSwitchLevel, further coins are routed to the coin cash
box. As the dispenser pays out coins the PathSwitchLevel should be increased by the corresponding
amount. Further coins will then be routed to the dispenser again until the new switch level is reached.

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 19 of 77

As this system relies on PathCount and PathSwitchLevel accurately tracking the contents of the
hopper, Paylink saves these numbers in non-volatile storage - they therefore reflect counts for the life
of the unit.

Paylink Routing - Flow Diagram

Coin

Route

Switching

Enabled?

Increment

Coin.PathCount

Coin.Path

(Cash Box)

Coin.PathCount

<

Coin.PathSwitch

Level ?

Yes:

Switching Configured

Coin.DefaultPath

(Coin Cash Box)

No:

Hopper Full

No:

Switching Not being used

Yes:

Fill Hopper

Route Switching is Enabled when

Coin.PathSwitchLevel and

Coin.DefaultPath are both non zero.

Route Switching is Disabled when

Coin.PathSwitchLevel and

Coin.DefaultPath are both zero.

If one setting is zero and the other is non

zero then operation is not defined.

Coin.Path

(Coin Hopper)

Notes:

 Setting route 0 should be avoided as it does not exist on an SR5 coin acceptor.

 The settings for PathSwitchLevel and PathCount are restored automatically by Paylink
after a reset.

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 20 of 77

Control of Motorised Acceptors

ccTalk bulk coin acceptor (1.11.3)
Paylink will automatically send the required command to operate the motor on a bulk coin acceptor,
but the application may want to trigger the special “reject clearance mode”. This is requested by
inhibiting all the coins for the acceptor and inhibiting the acceptor itself. (To just stop accepting all
coins, it is only necessary to inhibit the acceptor)

BCR / CR10x coin recyclers (1.11.5)
There are a number of features of these devices that require special handling by Paylink. Specifically
Paylink will:

o Issue a carousel clear to a CR10x 2 seconds after the unit is disabled, if a Payout has not
been requested.

o Respond to a BCR fault reports with a subsystem clear command
o Report the unit is busy while any of the carousel, singulator, payout belt etc. are active

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 21 of 77

MDB changer / BCR / CR10x / CLS recycler / SmartHopper support.
If a coin changer / recycler is used, it will appear as an acceptor in very much the same way as any
other acceptor. The coins that are routed for recycling can be distinguished as having a non-zero
Routed Path, although, obviously, any changes made to the routing by the application will be ignored.

For Payout, the application will (either explicitly or implicitly) specify exactly which coins are to be
used for the payout. Where higher value coins are not available, the standard Paylink algorithm will
work down the values of the coins as usual.

MDB Payout
For MDB payout, the situation is slightly complicated. The MDB changer protocol supports two
different payout mechanisms, a basic one that is always present and an extended level 3 one, which
is supported on any current changer. The basic system provides control over the individual payout
tubes, but has no feedback as to whether the payout works. The extended one provides feedback as
to the success of the payout, but does not allow any control over which tubes the payout is from.

The solution adopted is to always provide one dispenser for each tube, which is run using the basic
mechanism and for the extended mechanism an additional dispenser in provided which is run using
the extended mechanism. Alongside the extended mechanism dispenser, the individual level 2 tubes
are pre-set as inhibited.

To perform a “normal” payout, you just issue a PayOut() request and call PayStatus() and
CurrentPaid() to monitor the results. (If you use level 2 dispensers, CurrentPaid() will update almost
instantaneously rather than at the end and will always show that all coins requested have been paid,
regardless of the actual outcome.)

If you use thy normal level 3 changer, CurrentPaid() will update during the process, and you may get
a PAY_EMPTY status from PayStatus(), with CurrentPaid() then reflecting the actual payout
achieved.

The current levels of MDB tubes, as reported by the coin-changer, are returned in the field

CoinCount. In addition, the field CoinCountStatus will contain the value DISPENSER_ACCURATE for

a normal tube, and DISPENSER_ACCURATE_FULL if the changer is reporting the tube as full. Note that
the levels reported by the changer do not necessarily update in a “sensible” fashion after a payout.

Should you wish to perform an operation on a specific tube (e.g. emptying it), you should inhibit the
extended mechanism dispenser and enable the specific tube you wish to control.

As the manufacturer is already shown in the acceptor detail block for the changer, the extended
mechanism dispenser has a Unit field with the constant value of DP_MDB_TYPE_3_PAYOUT while the
individual tubes have Unit fields with the constant value of DP_MDB_LEVEL_2_TUBE.

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 22 of 77

MDB tube level monitoring.
Monitoring:

The main method for determining tube levels is via the Tube Status (0x02) MDB command.
This is issued during startup and then every 25 seconds. The response to this is copied directly
into the tube coin level, and one of the DISPENSER_ACCURATE or
DISPENSER_ACCURATE_FULL level statuses set.

Coin Insertion:

When a coin insertion (MDB event code 0x40) is reported as going to a tube, the changer also
includes an updated value for the tube level. If this is non-zero then this is used to overwrite
the coin level for the tube. . (Note that after a delay this will then be replaced by the value from
a Tube Status command)
When a coin insertion is reported as going to the cashbox for a coin that has an associated
tube, Paylink immediately issues a Tube Status (0x02) MDB command to obtain an accurate
value for the levels.

Manual Dispense:

When a manual dispense (event code 0x80) is reported then the reported tube level copied
directly into the tube coin level. . (Note that after a delay this will then be replaced by the value
from a Tube Status command if that is different)

Payout:

While a payout is in progress, no updates are made to the coin level. As soon as the payout
completes, Paylink immediately issues a Tube Status (0x02) MDB command to obtain the
changer’s opinion of the new levels.

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 23 of 77

Read out of Acceptor Details (1.11.x)
Different protocols / manufacturers provide different details on acceptors. The
Acceptor.Description field is generated from the information provided as follows:

ccTalk The replies to:
• Request Currency Revision / Issue (145 / 96+243),
• Request Currency Specification ID / Code (91 / 96+244),
• Request Software Revision (241) &
• Request Product Code (244) commands,
separated by ‘~’ characters.
Each individual field is omitted if there is no response to the command, although the
‘~’ character is still inserted.

ID-003 The entire reply to the “Get Version Request” (0x88) command

MDB From the Status and Extended Identification Commands
• Country Currency Code (4 BCD characters)
• Decimal Places (1 Character)
• Manufacturer (3 Characters)
• Model Number (12 Characters)
• Software Version (4 characters)
separated by ‘~’ characters.

CCNet This is the 15 character “Part Number” from the “Identification” (37H) command.

EBDS The replies to:
• Query Type (0x04)
• Project Number from Query Application Part Number (0x07)
• Firmware Version Number from Query Application Part Number (0x07)
separated by ‘~’ characters.

MEIBNR Is taken from the first component returned by GetIdentification.
It is the Description followed by the Version major and minor

The Acceptor.SerialNumber field is generated as follows:

ccTalk The binary reply to the ID Serial No (242) command.

ID-003 The “standard” ID-003 protocol does not allow for a serial number. A non-standard
0x8F query is issued and any response will be stored here.

MDB Bytes Z4-Z15 from the Extended Identification Command, converted from decimal
characters to a number.

CCNet The “Chassis Serial Number” from the Module Identification Request (53H0
command, converted from decimal characters to a number.

EBDS The reply to Query Serial Number (0x07). Unfortunately this doesn't fit into a 32 bit
number, so digits 5 & 6 or ignored.

MEIBNR Is taken from the first component returned by GetIdentification
It is the numeric value of the 1st 6 characters of the name field.

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 24 of 77

Coin / Note Dispenser Usage Details

Dispenser Power Fail support.
Some dispensers, especially hoppers produced by MCL and some bill recyclers, are guaranteed to
correctly count coins even if power is removed during a payout sequence. This facility is explicitly
supported in the Paylink software. The Count field in the interface for these hoppers is set during

Paylink start-up initialisation to correspond to the “total coins paid since manufacture” value (or its
closest equivalent) retrieved from the hopper, and is then updated as payouts occur. This field allows
for the correct counting of coins over a power failure.

At the end of every payout sequence, the Paylink stores, internally, the Count for each hopper. At

initialisation as well as reporting the retrieved count, it is also compared with the saved value. This
enables the CurrentPaid() function to continue to report the correct value, and also generates an
IMHEI_COIN_DISPENSER_UPDATE Event (see below) to register this update.

Detailed Device Support.

Abandoning a payout in progress (1.11.3)
As well as preventing a payout operation from starting, the Inhibit field in a dispenser is also used
during an actual payout. If the application set a dispenser inhibit while a payout it is in progress,
Paylink will attempt to abandon the payout in progress on that device.

Note that the overall payout will still continue on all the other dispensers that are not inhibited. To
cancel an entire payout the application should inhibit all dispensers.

Control of unwanted bill payout (1.11.3)
Under failure conditions a number of bill handling systems can enter a state where bills are not
accessible to the end user, but cannot be returned to a cash / reject location. When Paylink detects
these circumstances, it will pause its operation, queue a IMHEI_NOTE_DISPENSER_PENDING event with
the number of bills as the RawEvent field and automatically set an inhibit on the relevant dispensers.

The bills can be delivered by clearing the inhibit for all the dispensers that form part of the unit.

Combi Hopper Support.
This single unit is no longer actively marketed, but dispensed two different coin values. It is therefore
handled in a similar way to the MDB system. There is a primary dispenser, which is set up as a
normal unit with a Unit field of DP_MCL_SCH3A, and a Value field with the lower coin value in it.

The Count in this dispenser is the count of the lower value coins dispensed. In addition, another

dispenser is set up, with a matching Address field, a Unit field of DP_CC_GHOST_HOPPER, the

Value of the higher coin and the Count of the higher value coins dispensed.

Note that, due to limitations of the unit, during a payout operation the Count of the main dispenser

only is updated, as though all coins dispensed were of this value. At the end of the sequence, while
LastPayStatus() is still returning PAY_ONGOING, the accurate count of both coins is retrieved and

the two separate Count fields updates. The result of this is that, as the operation finishes, the Count

for the lower value dispenser decrements.

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 25 of 77

Read out of Dispenser Details (1.11.x)
Different protocols / manufacturers provide different details on acceptors. For almost all recyclers the
details are copied from the acceptor field.
The Description (Dispenser.Description) field is generated as follows:

ccTalk The replies to:
• Request Software Revision (241) &
• Request Product Code (244) commands, separated by ‘~’ characters.
Each individual field is truncated to 15 characters, and is omitted if there is no
response to the command, although the ‘~’ character is still inserted.

F56 / F53 The 12 character firmware revision, followed a ‘~’ followed by the 32 character device
information.

MEIBNR The phsyicalCashUnit name.

The Dispenser.SerialNumber field is generated as follows:

ccTalk The binary reply to the ID Serial No (242) command.

F56 Not Available

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 26 of 77

Complex Dispenser (Recycler) Operations (1.12.3)

Introduction
The original Paylink model was based around the concept of independent acceptors and dispensers,
with the main specification for a dispenser being the MCL / cctalk hopper.

The advent of bill / note recyclers meant that the Paylink model has had to be enhanced to include
these. The approach adopted is based around the idea that bill / note recycler (and the coin changer
MDB device) is a combination in a single unit of an acceptor and number of dispensers.

Outside of their core function, Complex Dispensers can have many more operational states, rather
than just running / errored. In addition, whilst the error reporting system is the same as for simpler
devices, there can be more details than the 12 or so pre-defined Paylink errors. The approach taken
is that an appropriate simple error is reported, and the RawEvent byte details the exact error reported
by the device. This section describes the operational characteristics of the devices, details on the
reporting of events / faults are detailed in the appropriate subsection of the Events (Faults / Auditing)
Section.

Security
The connections used by Paylink fall into four categories, cctalk, RS232, MDB and USB. These
communications systems tend to match up with different markets:
cctalk is a very versatile system with a connection that is relatively vulnerable to interference.

Paylink has, as a general philosophy, the idea that it will connect to anything. Using the
cctalk DES encryption facility in general for a bill and a coin acceptor do not therefore make
sense. A DES bill recycler however makes sense, as the locked down aspect here is in the
peripheral - Paylink can connect to any recycler, but the recycler will only communicate with
Paylink.

Given the vulnerability to high value fraud of a cctalk recycler, Paylink therefore insists that
any cctalk recyclers that can support DES encryption must be used with DES encryption
turned on.

RS232 is used with a number of protocols to connect expensive bill acceptors / recyclers for

applications that are typically in expensive, secure enclosures. Any interference with this
connection will generally tend to be visible to the Paylink application.

MDB is used in very cheap systems, typically vending machines. The connection is vulnerable to

interference, but the amounts of money involved tend to be low.

USB is used in many systems, but is relatively secure as intercepting operational communications

is difficult to achieve.

DES Key Exchange
Before using a cctalk DES based device, Paylink has to acquire and store the random DES key
provided by the device. Paylink automatically checks at device discovery whether it has a correct key,
and if it hasn’t Paylink goes into key exchange mode.

A Paylink device in key exchange mode flashes the green LED at twice the normal frequency, and a
device waiting for a key exchange is visible to the application with the ACCEPTOR_NO_KEY bit set in
the AcceptorBlock.Status field.

The mechanism for triggering a key exchange is unique to each manufacturer / device.

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 27 of 77

Component Identity
The general approach to identifying recycler devices is that the acceptor part usually contains the
overall description of the unit, and the dispensers are identified by an address (which is often a
sequence number from 1 upwards that is an intrinsic part of the protocol) together with the value that
they dispense. If the unit only has one dispenser, the address will be 1.

Where necessary a dispenser can be tied to acceptor by type and by having the same serial number.

The DispenserBlock.m_UnitAddress field(s) will contain the above address that identifies the

dispenser

On multi-drop system, such as cctalk and MDB, the UnitAddress will contain the address of the

parent acceptor OR’ed with this dispenser address number so that multiple units can be
distinguished.

Routing

Dispenser Destination Initialisation
Paylink, during its initialisation of any recycling unit, always determines the value of the coin / bill in
the dispenser(s) and which coins / bills are routed into which dispensers. The address(es) of the

dispensers are stored into the AcceptorCoin.Path field(s). All the other coins which route directly

into the cashbox will always have AcceptorCoin.Path fields of zero.

When a coin / bill is accepted and routed into a dispenser this fact is always identified by Paylink and

the AcceptorCoin.PathCount is always accurately incremented to show this.

After acceptance, Paylink then updates the DispenserBlock.CoinCount field by actually

querying the unit. Depending upon the actual unit this will be either accurate or an approximation.
With a bill recycler the result is usually an accurate figure, with an MDB changer the result is often
approximate.

The value returned will however always be that reported by the device, any systematic corrections
will have to be handled by the application.

Routing Control.
For all coin recycler units the routing is fixed and it is not possible for Paylink, and hence the
application, to change this.

For bill recyclers units, the routing can in general be changed by Paylink. The application notifies

Paylink of the desired routing by changing the AcceptorCoin.Path fields of the incoming Coin

(Bill) array item to contain the associated dispenser address, as described in Component Identity
above.

The precise actions that occur when an AcceptorCoin.Path field is changed:

• If the AcceptorCoin.Path field for a currently recycled bill is changed to zero, Paylink sets the

unit to stop diverting bills into the recycler. If there are no bills stored, then the Dispenser value
will go to 999999999, (this is irrelevant to payouts, as the dispenser will return “empty” if it is
attempted to be used), if any bills are currently stored they may remain available to be paid out
(depending upon the device capabilities.)

• If the AcceptorCoin.Path field for a currently non recycled bill is changed from zero to a non-

zero value, Paylink will set the unit to start diverting these bills into a recycler. Where possible the

recycler used to contain the bills will be that identified by the value in the AcceptorCoin.Path

field - but this is device specific. This may cause different value bills already in that recycler to be
dumped to the cashbox.

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 28 of 77

• If the AcceptorCoin.Path field for a currently recycled bill is changed to different non zero

value, Paylink will attempt to set the unit to recycle the bills to a different recycle unit. This may
cause different value bills already in that recycler to be dumped to the cashbox. If bills are
currently stored on the previous recycler they may remain available to be paid out (depending
upon the device capabilities.)

• If more bills have a non-zero AcceptorCoin.Path value (i.e. are set to recycle) than the unit

has available recyclers, or if the values do not map onto available units, then Paylink does not
update the unit and (silently) waits for the application to reduce / re-arrange the bills that are
recycled. There will be a comment to this effect output to the Paylink log.

• The application should not set two or more separate bills to contain the same value in the

AcceptorCoin.Path field, f this is done, then this situation is undefined

Note that as the specification is “where to send the bill" there is no simple method to have two
dispensers regarded as receiving the same value bill - on some recyclers this might be achieved by

changing the AcceptorCoin.Path to a different dispenser, which can leave the previously set

dispenser receiving the bills.

The options for automatic re-routing using DefaultPath and PathSwitchLevel are only available with
coin acceptors. For note recyclers, these fields are never used.

Bill Recycler Emptying
The high value represented by the bills in recyclers means that the dispensing of bills requires the
interaction of the recipient. The high value of the bills stored in the recycler also means that users are
liable to want to empty them at the end of the day.

These two factors mean that bill recycler manufacturers implement a “dump to cash box” facility so
that the bills can easily retrieved.

Full Dump
A full dump is where the recycler takes every bill from a dispenser into the cash box until the
dispenser registers as empty.

Triggering this is implemented on Paylink by the user setting a DispenserBlock.Status value of

DISPENSER_CASHBOX_DUMP.

On recyclers that maintain guaranteed accurate counts of bill, the application can monitor the dump

process by observing the DispenserBlock.CoinCount going to zero.

On both these and other recyclers, the application can check for the DISPENSER_CASHBOX_DUMP
value being replaced by another status. Where the dump process completes normally, the status will
take value of DISPENSER_DUMP_FINISHED.

Partial Dump
As well as the above facility to cycle every bill into the cashbox, many recyclers provide the ability to
perform a partial cashbox dump processes, which can be used to leave a “float” of bills in the
recycler.

Triggering this is implemented on Paylink by the user setting the count of bills that are to be dumped

in the new DispenserBlock.NotesToDump field and a value of DISPENSER_PARTIAL_DUMP in the

DispenserBlock.Status field.

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 29 of 77

The application can usually monitor the dump process by observing the

DispenserBlock.CoinCount field reducing by the requested amount.

The application can check for the DISPENSER_PARTIAL_DUMP value being replaced by another
status. Where the dump process completes normally, the status will take value of
DISPENSER_DUMP_FINISHED.

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 30 of 77

Payout Progress

Cancelling Payout
Bill recyclers / dispensers in general hold the bills awaiting collection by the user, and Paylink does
not regard the Payout as complete until the bill has actually been taken. If the application program
decided that the bill has been forgotten, it can abandon the payout by setting the inhibit flag on the
dispenser. This will cause Paylink to request that the recycler abandons the payout and returns the
bill to the cash box.

Note that following the abandonment of the bill payout Paylink will automatically proceed to attempt
payout in coins or other bills, so in the usual case all the dispensers should be disabled at the same
time.

Notification of progress
While a bill recycler / dispenser is holding a bill awaiting collection by the user, Paylink does not
regard the Payout as complete. The fact that the bill is available to be taken is however possibly of

significance to the application, and therefore Paylink will update the DispenserBlock.Count and

DispenserBlock.CoinCount fields for the relevant dispenser as soon as the bill is accessible.

They will not then change when it is taken.

Power Fail

Temporary power interruption
Should the power / communications to the recycler fail during a payout while Paylink continues to run,
Paylink will initially just wait for the communications to restart, and will then continue as though there
has been no interruptions.

Where an interruption lasts “a long time” then Paylink will abandon the payout attempt. This will result
in a dispenser / payout status of PAY_US. If at the time the payout is abandoned, Paylink is aware of
a bill awaiting collection by the user, it will be regarded as having been paid out. It will not therefore
be substituted by coins and can result in a normal payout completion status.

After the timeout, if / when normal communication with the recycler is resumed, Paylink will check the
current status of the unit.

• A bill that was paid and collected during the interruption will cause the DispenserBlock.Count

field to be incremented by the appropriate amount and a IMHEI_NOTE_DISPENSER_UPDATE

event entered in the NextEvent() queue.
• A bill that has been sent from a dispenser to the cash box (as a part of the start-up recovery

process) will merely result in the DispenserBlock.CoinCount being updated.

• A bill that was awaiting collection, and has still not been taken, will cause the dispenser status to
change to PAYOUT_ONGOING until it is eventually collected. This will have no effect on the

DispenserBlock.Count field or Payout system.

• A bill that was awaiting collection but is now known to have been automatically recycled to the

cash box, will cause the DispenserBlock.Count field to be decremented (to “undo” the

payout) and a IMHEI_NOTE_DISPENSER_UPDATE event entered in the NextEvent() queue.

Full power Failure
Should the power to PC and recycler fail during a payout the application may wish to reconstruct the
partial results of the last payout attempt. To facilitate this, Paylink will attempt to handle the
interrupted payout according to the above rules

To do this requires that the DispenserBlock.Count field be maintained over power cycles - thus

applications that so desire can record the Count fields before a payout is started, and then react

accordingly if on startup they discover that a payout was in progress.

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 31 of 77

With coin hoppers, the speed of the payout means that the only place where an accurate record of
interrupted payouts can possibly be obtained is in the hopper itself. Note dispensers typically do not
provide such facilities, and Paylink therefore maintains the record itself.

The net result is that lifetime totals are maintained and reported in the Count fields, which are

retrieved and updated by Paylink depending on the data read from the device during startup.

If this startup processing causes Paylink to suspected an uncompleted payout actually completed, an
IMHEI_COIN_DISPENSER_UPDATE event is entered in the NextEvent() queue.

Unpaid Bills
Some devices (e.g. the B2B-300 bill recycler and F56 bill dispenser) have a delivery stage where bills
are accumulated for eventual payout.

Following a power failure, it can happen that bills are in this output stage and are inaccessible to the
user. The only thing that Paylink can do at this point is to complete the delivery of these bills, but as
there is a potentially long time since the application requested the payout that accumulated these
bills, it is inappropriate to just deliver them at power up.

(Some F56 / F53 models also have a problem that following a power failure during a payout there can
be an unknown number of bills awaiting delivery.)

In these cases, for each dispenser device that is believed to have notes ready for delivery, Paylink
marks the device inhibited, and generates an IMHEI_NOTE_DISPENSER_PENDING event with the number
of bills as the RawEvent field. If the number of bills is unknown then 99 is used.

To complete the delivery process, the application should clear the inhibit setting on all the relevant
dispensers.

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 32 of 77

Device Specific Functionality
The above description is the ideal that Paylink strives to achieve. The actual functionality provided by
specific devices can however interfere with this, so all supported models of note / bill recycler are
itemised here:

MEI BNR
If a bill is set to not be recycled, any bills of that value already in the recycler(s) will be dumped to the
cashbox.

The dispenser address of recycler units are those intrinsic to the BNR hardware and correspond to
the "physical unit index" - typically these values are 3 to 6.

This bill recycler is capable of directing the same bill to multiple dispensers, using the method
described above.

Paylink fully implements the partial dump described above, but a restriction in the operation of the
BNR means that the BNR will reset if a dispenser is partially emptied to a level that is different to that
used last time. (The BNR dump command dumps notes to a preset level - changing this preset level
requires a reset.)

This device supports a cash loader, and also requires resets during normal operation. During both of
these operations the device is not available for use. Paylink reports to the application the fact that the
device is unavailable by marking the acceptor device as busy (ACCEPTOR_BUSY).

When the user of the BNR device accesses the loader or the cashbox, the device goes out of
service. Paylink notifies the application of this by queuing an IMHEI_NOTE_STACKER_PROBLEM event to
the application and a subsequent IMHEI_NOTE_STACKER_FIXED when the intervention is complete.

SCR Advance (EBDS)
The bill routing to recycler units are reported to the Paylink during startup and so the

AcceptorCoin.Path value is initially set up correctly. When the AcceptorCoin.Path value is

changed by the application, the SCR cannot be told which recycler to use, only that the bill is to be
recycled. This means that when you write to these fields the values are essentially a zero / non-zero
flag.

If only one bill is set to recycle, it will be automatically routed to both recyclers, with the unit deciding
dynamically which one to use for a payout request. There is no way of overriding this behaviour.

All dump facilities work as expected.

The SCR has two special features that are unique to the device, both relating to the management of
bills held on the recycle drum.

It is able to detect that a note held on a drum is not recognisable as a valid note. This is reported to
Paylink, which notifies the application by queuing an IMHEI_NOTE_DISPENSER_UNRECOGNISED event,
and then proceeds to automatically dump the bill to the cashbox. This sequence is repeated for each
invalid bill.

During startup it is also It is also capable of detecting that there are fewer bills stored on a drum than
it was expecting. Paylink notifies this event to the application by queuing an IMHEI_NOTE_DISPENSER_

MISREAD event to the application, which identifies the drum and in question and includes the count of
bills that are missing.

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 33 of 77

SCR Advance Mixed Denomination Recycler (1.12.12)
This is the MDR variant of the standard SCR which allows Paylink to have complete control of the 2
recycle drum units.

Notes are initially automatically accepted onto drum 1, but can then be moved to drum 2 (and back
again) under Paylink’s control.

Paylink always operates in terms of dispensers, each of which normally corresponds to a physical
device (or part thereof) but each of which has to contain a single bill denomination. As in the MDR the
actual recycler rolls (can) contain multiple bill denominations, each Paylink dispenser corresponds
not to a drum but to a single bill denomination. If the recycler can handle 7 different denominations
then there will be 7 of these “virtual” dispensers.

All the details of moving notes between drums to achieve payouts are handled by Paylink. The API
presents a “virtual” dispenser unit for each denomination handled by the recycler, there are no
Paylink control blocks that map onto the actual physical drums inside the recycler.

The application can specify which drum it would like notes to be initially held on for storage, by setting
either 1 or 2 as the Routed Path for the denomination. (Path values of zero are sent straight to the
cashbox.) At present the device itself limits recycling to a maximum of 4 different denominations.

When Paylink receives a payout (or dump) request, it checks the two drums to find a bill involved in
the payout that is closest to the “top” and then pays out (dumps) that one bill. It then restarts this
process for the remaining bills. This repeats until the payout (or dump) is complete.

If necessary in order to payout this bill it will move any bills “above” it to the other drum (or dump
them to the cashbox if the other drum is full). Importantly they are not returned afterwards to their
acceptance drum.

The choice of denominations that are present in the payout is the standard Paylink one of working
down in denomination value and planning to pay as much as possible of each value before
proceeding to lower values. (This default can be overridden by use of the Exact Pay facility, but it is
not expected to be.)

Importantly, Paylink does not examine the payout as a whole with regard to which bills are held on
the rolls. Specifically, it does not re-assign the denominations required based on the current contents
of the rolls. Although there may a theoretical benefit to this, in practice the complexity outweighs any
advantage.

The MDR recycler also has the same special situations at startup as described above for the SCR.

JCM Vega (cctalk DES) & Innovative NV11 Recycler (DES)
This is a standard, single bill recycler, with no special features.

These recyclers can retrieve a bill waiting for collection, and send it to the cash box.

If the dispenser is inhibited during a payout then, as well as preventing further payouts, Paylink will
actually retrieve the bill waiting for collection. As this occurs after the bill has been accounted for,

both the DispenserBlock.Count field and the CurrentPaid() return value will decrement.

(Note: although the JCM Vega in cctalk mode is limited to a single bill recycler, the dual recycler
model is supported in ID-003 mode.)

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 34 of 77

ICT BR2300 (Not available with DES)
This is a completely standard, single bill recycler, with no special features. It isn’t available with DES
encryption, so runs in the much less secure BNV encryption mode.

MDB Note recycler
MDB note acceptors with recycler capability are automatically detected and supported.

The MDB specification is much more limited than other protocols and so the MDB Acceptor does not
allow for:
Control of bill routing. The recycler reports the set-up of bill routing, allowing for the acceptor
routing information to be initialised, but altering this has no effect.
Bill Dump.
It is not possible to initiate a recycler to cash box note dump so the DUMP and PARTIAL_DUMP
operations have no effect.

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 35 of 77

Innovative NV200 Recycler / SmartPayout (DES)
This recycler by design stores all bills into a single storage space. To allow for control over the payout
operations, Paylink treats each denomination as stored into a separate “dispenser”; so each
denomination is set up as routing into a matching dispenser.

To stop storing a particular denomination, the routing can be zeroed - and to empty all bills of a
particular denomination into the cash box, the corresponding dispenser can be dumped.

Innovative SmartHopper coin recycler
This recycler by design stores all coins into a single storage space. To allow for control over the
payout operations, Paylink treats each denomination as stored into a separate “dispenser” of type
DP_SHOPPER.

In addition there is a special Dispenser DP_SHOPPER_TOTALfor overall control.

When dumping from smart hopper, you can either do a controlled dump, emptying all or some coins

of a particular denomination into the cash box, by using DispenserBlock.NotesToDump and

setting DispenserBlock.State = DISPENSER_PARTIAL_DUMP on the individual

DP_SHOPPER. Note that the DISPENSER_CASHBOX_DUMP command does not work on the

individual DP_SHOPPER.

(In order to allow multiple denominations to dump simultaneously, Paylink accumulates dump
requests for a period of ½ seconds before issuing the corresponding command.)

To empty all the coin in the smart hopper into the cash box you should use

DispenserBlock.State = DISPENSER_CASHBOX_DUMP on the single DP_SHOPPER_TOTAL

dispenser.

When used with an integrated acceptor or coin feeder, each denomination is set up as routing into
the matching dispenser. To stop storing a particular denomination, the routing on that denomination
can be zeroed in the AcceptorBlock.

If you use the integrated acceptor model, it may be necessary to periodically dump the unwanted
denomination(s).

JCM UBA & iPro Recycler
The UBA and iPro recyclers are functionally identical.

These recyclers can retrieve a bill waiting for collection, and send it to the cash box.

If the dispenser is inhibited during a payout then, as well as preventing further payouts, Paylink will
actually retrieve the bill waiting for collection. As this occurs after the bill has been accounted for,

both the DispenserBlock.Count field and the CurrentPaid() return value will decrement.

This unit can have bills “manually” loaded into the storage stackers. When this occurs, the unit
doesn’t know about the event and so does not update its internal counts, these are only updated
when bills that have been accepted are stacked.

Similarly, if bills that have been stacked automatically are manually taken, the counts are not
reduced.

The counts returned by Paylink are those from the unit, and so under these circumstances will be
incorrect - it is up to the application to compensate for those bills it knows have been manually
inserted.

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 36 of 77

As a special facility only for the iPro / UBA the coin count in the actual device can be updated from

the API. If the new value is written into DispenserBlock.CoinCount and the

DispenserBlock.Status is set to DISPENSER_UPDATE_COUNT then Paylink will attempt to

update the count in the device and will set the DispenserBlock.Status to

DISPENSER_COUNT_UPDATED if it is successful.

When the counter of the number of bills in a recycle stacker reaches zero Paylink will still attempt to
pay bills - if this succeeds the UBA counter will remain at zero - it will not go negative.

Similarly, if the recycle stacker runs out of bills when the counter is non-zero, the will zeroize the
counter.

Note that the recycler itself uses the routing / recycler specification during payout. All notes paid out
undergo the normal input validation process and any that fail this validation are stack into the
cashbox without comment.

F56 / F53 Bill Dispenser
The F56 device comes with a number of different options. Although the F53 is a different device
number, Paylink just regards it as another option of an F56. All descriptions are therefore of an F56.

The F56 has a number of unique characteristics:
• The F56 only reports cassettes that are present; the existence of a location for a cassette is not

discoverable. Paylink therefore only reports the status of cassette locations in which it has seen a
cassette.

• A cassette can have a pattern of magnets set into it to indicate the type of bills with which it is
loaded. The F56 configuration can include bill descriptions corresponding to these magnet
patterns, which can specify value, bill length and bill thickness. If a newly discovered cassette
matches such a pattern specification, then the bill value and sizes are set from the specification.

• If no magnet specification is given, or if there is no match, then the sizes default to a generic
accept all size and the value is set as 999999999. This can be overridden to its correct value
using the standard Paylink facilities.

• A pool area / note delivery option is possible, with delivery to the front or to the rear. Part of the
configuration specification of an F56 has to include whether or not a delivery option is fitted.

• The F56 records in non-volatile memory the number of bills delivered from a payout position. This

value is reported to the application in the DispenserBlock.Count field.

• Some F56 models allow for the recovery of a failed dispense operation - on others this
information is not available. Where this information is not available and the unit has a final
dispense stage, then the notes are left in the pool area and Unpaid Bill processing performed.

• An F56 can be fitted with a shutter at the bill delivery stage. Paylink will automatically send a
close shutter command when bills have been taken from the delivery stage by the user.

• An F56 can reject bills as they are being paid out. Although it does not “fit” the API as specified,
the handler actually returns the cumulative total of the in the DispenserBlock.CoinCount field.

F56 / F53 Jams
The F56 is complex mechanically, so a jam situation can be reported for a number of specific
reasons. To allow the application to handle this the F56 handler will generate specific event (vie the
NextEvent() system) to notify the application of these. Details on this can be found in the F53/F56
Fault Processing subsection.

Cashcode B2B-300
The Cashcode B2B-300 accumulates bills to be dispensed in separate unit before presenting them to
the user. When bills are “found” in the dispenser during startup, the only thing the unit can do is to
dispense them.

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 37 of 77

When Paylink discovers this situation, during startup, or following a “long” power fail, it will undertake
Unpaid Bill processing as above.

Cashcode B2B-60
The Cashcode B2B-60 operates by paying bills one at time for retrieval through the acceptor. To
allow for full control in the event of a power failure / connection problem, Paylink runs the acceptor so
that each note is a separate transaction. This interacts badly with coins if you set the simultaneous
hoppers flag.

A B2B60 specific option is to actually “throw” the bills from the acceptor, rather than letting them be
removed by the user. This processing can be requested by an option in the Paylink configuration file.

Merkur 100
This recycler automatically restarts a payout on power up, unless a software reset is issued before
the acceptor reaches the point at which the delivery is under way.

During the startup process, Paylink issues such a reset, so if the two units power up approximately at
the same time, no spurious bill is paid. If this succeeds, then any bills “in progress” will be returned to
the stacker.

This recycler is capable of directing the same bill to multiple dispensers, using the method described
above.

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 38 of 77

Extended Escrow (1.12.6)

Introduction
The original design of the Paylink API pre-dates the arrival of note recyclers; at the time that Paylink
was produced coin escrow was handled by “external” equipment controlled by a simple output driving
a solenoid.

The Escrow facility implemented in all Note acceptors provides a way of double checking that a note
is acceptable before it is accepted, but does not provide a proper generalised escrow facility as:

o There is a significant delay between accepting the escrow note and knowing that it will
remain inaccessible to the user

o It only provides escrow for a single note

Paylink now provides an ExtendedEscrow API which, when used in conjunction with a suitable note
recycler, meets the following objectives:

o Up to 32 notes can be handled
o The application remains in total control of the Escrow process
o Once a note is in the extended escrow system it is only returned to a user under application

control.
o If escrowed notes are returned to a user, only those note supplied by the user are returned

automatically.
o Where escrowed notes match note recycler dispensers, the notes are tracked and directed to

those dispensers.
o If an application has normal Escrow turned on, it can control the entry of notes into the

extended escrow system.
o A note recycler with an extended escrow dispenser defined cannot be enabled using the

normal control facilities (As the notes will go to the extended escrow dispenser from where
they will unrecoverable.) Note that individual notes can still be enabled and disabled.

Under abnormal conditions, the application decides on the appropriate action, rather than Paylink
automatically. Such conditions include:

o System start-up where an escrow operation was in progress.
o Notes “accidentally” directed to the cashbox rather than a recycler.

Functionality
A note recycler is regard by Paylink as being made up of an Acceptor and a number of recycling
units.

In general, these recycling units will have been published by Paylink as Dispensers and can be used
to make payouts to users.

The pre-requisite for Extended Escrow is that the note recycler has at least one recycling unit that will
accept every denomination of note and that has ability to either transfer these notes to the acceptors
stacker, or to return them to the user. This is called the escrow recycling unit in this document.

The essential feature of the Paylink Extended Escrow system is that notes are initially accepted into a
logical escrow, with the Paylink unit keeping track of which notes have been inserted and where they
are being stored.

The application, which uses the Paylink escrow facilities to control and monitor this, can then decide
to either stack (keep) the notes, or can decide to return the notes to the user.

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 39 of 77

The code running within Paylink is responsible for tracking the notes and issuing the appropriate
commands to the note acceptor.

Accepting Notes
When the EXT_ESCROW_ACCEPT command is issued, notes are accepted to the recycling unit(s) and the
EscrowNote array is filled in, to detail which notes have been accepted and which recycling unit

they are being stored on.

Returning Notes
If an EXT_ESCROW_RETURN command is issued, then for every recycling unit Paylink issues a “pay”
command to the recycler for the number of notes stored on that unit during the accept phase -
thereby returning to the user the notes they have just inserted.

Keeping Notes
If an EXT_ESCROW_STACK command is issued, then the application wishes to keep the notes, and the
processing varies depending upon which notes have been stored and which recycling units they are
store on.

For an escrow-recycling unit that has been configured to be “pure escrow” the Paylink code issues a
dump command to transfer all the notes in that unit to the cashbox.

With recycler like the Crane PS B2B300, notes destined for a normal recycling unit that becomes full

are just redirected to the escrow-recycling unit. When an EXT_ESCROW_STACK command is issued for a
device like this Paylink updates its internal level of payable notes, as the unit itself will essentially
handle the situation where the unit becomes full.

For an escrow-recycling unit that is configured to also be published as a Dispenser, the Paylink code
has to examine all the notes that are in the recycling unit and to compare them with the routing in the
corresponding acceptor. Where the note denomination matches the notes is stepped over and kept
for subsequent use in payout operations.

Where the note denomination doesn’t match, the Paylink code issues a partial dump command to
cause the non-matching note and all notes that were inserted later to be stacked to the cashbox.

As a final check, the total number notes being retained on the escrow recycling unit is compared with
a set level and if over this level, then the a partial dump command to stack the excess notes to the
cashbox has to issued so as to retain enough space to store future escrow notes.

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 40 of 77

Operation
The operation of the Extended Escrow is quite simple. The Application can at all times discover the
state of the escrow system by calling ReadEscrowBlock.

The current state of the system is reported in the State field.

To control the Escrow system, the application should call EscrowCommand with an appropriate
parameter. The Escrow system indicates that it has accepted (and is processing) the command by
setting the Result field to EXT_ESCROW_COMPLETE.

For each Escrow system state, the acceptable commands and their results are shown in this table:
(for ease of layout, the EXT_ESCROW_ prefix for all the states / commands has been omitted)

Current State Allowable
Commands / Events

New State Comments

NONE N/A No escrow system configured
OFF START IDLE

START RETURNED_PROBLEM If there were notes stored
IDLE ACCEPT WAITING No notes have yet been read

STOP OFF
WAITING Note being read LOADING

PAUSE IDLE
LOADING Read completed STORED This repeats for each note
STORED Note being read LOADING

Note read that fills the
system

FULL At this point, the acceptor is
disabled.

PAUSE PAUSED At this point, the acceptor is
disabled.

PAUSED ACCEPT LOADING Acceptance is restarted
STACK STACKING
RETURN RETURNING

STACKING Stacking OK STACKED_OK

Stacking problem STACKED_PROBLEM
RETURNING Returning OK RETURNED_OK

Returning problem RETURNED_PROBLEM
STACKED_OK ACCEPT WAITING This clears the previous transaction

STOP OFF
STACKING_PROBLEM Problem fixed STACKED_OK This status stays until fixed
RETURNED_OK ACCEPT WAITING This clears the previous transaction

STOP OFF
RETURNING_PROBLEM RETURN RETURNING Retry the return
FULL PAUSE PAUSED

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 41 of 77

Abnormal Situations
If there are notes in the extended escrow dispenser at start up, they need to be processed under the
control of the Application. To allow the application to detect this, there are two abnormal states that

can be presented when the extended escrow system transitions from OFF when the START command is

issued. Either RETURNED_PROBLEM which indicates that the notes were actively being returned by

Paylink when it last ran, or POWER_ACTIVE which indicates that the notes were being held and had not
yet been processed.

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 42 of 77

Cashless Processing

Background

There are a number of cashless systems available that are supported by Paylink. These include:
Credit Card Acceptance and Ticket In / Out applications for AWP systems.

Paylink provides an interface to support this for acquiring credit (from a ticket or from a cashless
device) and returning it to a cashless device based system if the peripheral supports that. The

MaximumPay field in the control object operates as a flag for this; if it is non-zero then credit

payment is possible

In all cases, the remote processing runs autonomously, and Paylink provides a Cashless Object that
reflects the processing of the remote unit, which should be regularly polled by application in order to
determine what is happening.

Data is transferred to and from the Paylink system using this Cashless Object, and control of the
process is via a number of functions, whose names all start Cashless...

The most import property of the Cashless object is the current state, which allows the application to
see where the cashless system is up to.

The Values for the CurrentState item are duplicated from the API manual here:

Name Value
CR_NO_UNIT 0 No appropriate unit connected
CR_BUSY 1 Busy
CR_DISABLED 2 Idle and disabled
CR_IDLE 3 Idle
CR_FAULT_DISABLED 4 The device has become non operational
CR_FAULT_IDLE 5 The device has become non operational
CR_AVAILABLE_IDLE 6 Idle, but prepared for Credit Requests
CR_INVALID_OP 100 Invalid operation

These are only valid during Credit Input operations
CR_AVAILABLE 11 Arbitrary Credit Available
CR_CONFIRMED 12 Credit Request from Application Accepted
CR_TAKEN 13 Credit Actually Taken for remote source
CR_REFUSED 14 Credit Request from Application Refused
CR_CANCELLED 15 Application has successfully cancelled the transaction
CR_FAILED 16 The device failed during processing - no credit taken
CR_FAILED_TAKEN 17 The device failed during processing - credit was taken
CR_INVALID_REF 101 Invalid Reference

These are only valid during Credit Payment operations
CR_TRANSFERRING 21 A credit output operation is in progress
CR_TRANSFERED 22 The Credit has been accepted by the device
CR_TRANSFER_FAIL 23 The credit has been refused by the device

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 43 of 77

Processing

Credit Card Sequencing

Note that for each function CurrentState will normally return the transient state CR_BUSY

before becoming the state shown in the table.

Credit Input Sequencing
The following table shows the normal sequence of states taken by CurrentState during a typical

credit card transaction:

State Normally Entered Because:
CR_NO_UNIT System Startup
CR_DISABLED Paylink discovers the cashless unit
CR_IDLE Application Calls CashlessEnable or CashlessReset
CR_AVAILABLE Credit Card Presented
CR_AVAILABLE_IDLE System idle with e.g. MDB Level 3 "always Idle" processing

enabled.
CR_CONFIRMED Application Calls CashlessRequestCredit and the credit is

available.
CR_TAKEN Application Calls CashlessTakeCredit
CR_REFUSED Application Calls CashlessRequestCredit and the credit is

not available.
CR_CANCELLED Application Calls CashlessCancel

The State "CR_AVAILABLE_IDLE" should in general be processed in exactly the same way as

"CR_AVAILABLE", the only difference being that it is the normal state of the unit and the value in
CreditValue has been specified in the configuration file, not read from the peripheral.

Credit Output Sequencing
The following table shows the normal sequence of states taken by CurrentState during a typical

credit card revalue transaction:

State Normally Entered Because:
CR_NO_UNIT System Startup
CR_DISABLED Paylink discovers the cashless unit
CR_IDLE Application Calls CashlessEnable or CashlessReset
CR_AVAILABLE Credit Card Presented
CR_AVAILABLE_IDLE System idle with e.g. MDB Level 3 "always Idle" processing

enabled.
CR_TRANSFERRING Application Calls CashlessPayCredit and the credit is

acceptable.
CR_TRANSFERED The peripheral device has accepted the credit
CR_ TRANSFER_FAIL The valid request has not completed (Invalid requests result

in a CR_INVALID_OP status

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 44 of 77

Ticket Sequencing
The following table shows the normal sequence of states taken by CurrentState during a typical ticket
transaction:

State Normally Entered Because:
CR_NO_UNIT System Startup
CR_IDLE Paylink discovers the cashless unit or CashlessReset
CR_AVAILABLE Application calls SubmitTicket with a valid ticket reference
CR_CONFIRMED Application Calls CashlessRequestCredit for the value on

the ticket.
CR_TAKEN Application Calls CashlessTakeCredit

CR_REFUSED Application Calls CashlessRequestCredit and the credit is

not avaiable.
CR_CANCELLED Application Calls CashlessCancel

Abnormal Processing

The above table represent the normal way that credit acquisition proceeds. Paylink however includes

facilities to handle abnormal situations. These situations use the fields: TotalAcquisitions and

TotalCredit. These are updated in real time and preserved over a power fail situation. An

application that wishes to handle such situations can store the values of these before starting a
transaction, and then check them on startup.

MDB Cashless processing
The most common peripherals that is used with Paylink cashless processing is a standard MDB
cashless peripheral.

The MDB standard allows for different modes of operation: the original standard one and a new
contactless optimised one.

With the original standard processing a transaction starts with a token or card being presented to
the peripheral. The peripheral validates the token / card and then informs Paylink of the availability of

a certain amount of credit. This corresponds to the CR_AVAILABLE status, with this amount shown in
the control block. The application can then ask the user what they want to purchase.

With the contactless optimised processing the peripheral is permanently in the state where it will
perform a credit transfer, the transaction starts with the application, which sends an unsolicited
request to the peripheral, which then fails if the amount is too high. This mode is known in the MDB
documentation as “always idle”.

In use, the mode that will be used is determined by Paylink and is set in the configuration file. The
basic entry of
Cashless at 10h

sets Paylink up to use the original standard processing, whereas
Cashless at 10h idle 3000

sets Paylink up to use the contactless optimised processing. The value following the idle keyword is
presented to the application as the available credit, but is not relevant to any of the processing done
by Paylink.

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 45 of 77

MDB Cashless Credit
The MDB cashless specification allows for credit transfer from the Paylink unit to a token / card
presented to the peripheral. The MDB Cashless messages provide two separate routes to transfer
credit to the MDB peripheral: Negative Vend and Revalue.

It is not explicitly stated in the protocol, but Revalue is most appropriate for standard processing and
Negative Vend for the contactless optimised “always idle”.

For the standard mode, when a session starts the peripheral is queried for the maximum value of a
Revalue request and the reply number set in MaximumPay.

For the “always idle” mode, if the “Negative Vend” available flag is set then MaximumPay is reported
as 65535

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 46 of 77

When CashlessPayCredit is called, then if the value is below the Revalue limit or Negative Vend is
not available then a Revalue command is issued, otherwise a Negative Vend command is used.

Example Cashless Transaction

The following diagram shows a typical cashless transaction for a vending application and a card
reader.

Begin

Call OpenMHE ()
Call EnableInterface ()

Call CashlessEnable ()

Reader
Ready ?

Call CashlessReadData ()

App
Ready to
Accept ?

Call
CashlessReadData ()

No

Yes

No

Card
Arrived ?

No

Call
CashlessRequestCredit ()

Customer
Chooses
Product

Call CashlessReadData ()

Credit
Available ?

No

Vend Product
and Call

CashlessTakeCredit ()

Yes

Call
CashlessReset ()

Enables the Paylink Interface

Enables the Card Reader System
Cashless acceptance is idle

Checks for card arrival,
“NFC” pushbutton pressed
or Level 3 operation

Now the application knows
the price of the product and
a request for that value can

be made

Now the application is
waiting for confirmation that

the amount is available

Commit the transaction

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 47 of 77

Meters / Counters

The Standard Paylink units support the concept of external meters that are accessible from the
outside of the PC system.

In keeping with the Paylink concept, an interface is defined to an idealised meter. This will be
implemented transparently by the card using the available hardware. Currently the Paylink unit will
support either a Starpoint Electronic Counter, or from 1 to 8 mechanical meters.

Mechanical Meters (1.12.4)
From 1.12.4 onwards, Paylink supports mechanical meters, driven using pulses through the general-
purpose high power outputs. Suitable meters are required to operate on DC at 20 pulses per second
or faster.

Configuration file entries are used to map Counter Numbers 1 to 8 onto the Paylink outputs.

Paylink records how many pulses have been sent, and how many are currently required. It attempts
to handle the fact that while the pulses are being output the power may be cycled. Paylink updates its
non-volatile memory as it turns on the transistor at the start of the pulse. This means that during a
power cycle, at most one pulse may be lost (as it is not driven for long enough) but no spurious
pulses can be generated.

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 48 of 77

Events (Faults / Auditing)

Introduction

The Paylink system design is based around the handling of money in and money out. The peripherals
used are also capable of providing notifications that are not related to money, primarily faults and
fraud attempts.

This information is captured by Paylink, and is provided to the application as “Events”, which are
queued and passed to the application on request.

There is no intention that these events would be used for the normal operation of the application.
Rather, the intention is that they can be captured and presented in “management” reports.

(Obviously, the application can respond automatically to events such as fraud, by disabling
everything for a while, but this doesn’t form part of the algorithms by which the application manages
the peripherals.)

The event codes used have an internal structure, allowing cateogizations. The bottom 6 bits are the
unique event classification code, fault related codes have bit 5 set and otherwise overlap these
events code, whilst more significant bits describe the type of unit affected.

For details of the exact makeup of the values of these codes, users are refered to the ImheiEvent.h
header file.

Events fall into two categories, notifications and faults. Notifications are just that, the incoming
information is passed along to the application.

On the other hand, Paylink remembers the fact of a fault having happened, and when the fault clears,
a NOW_OK “fault” event will be generated.

A specific bit in the event code is reserved for indicating fault events.

Full details on the make up of the event codes are given in the “Milan / Paylink Programmers Manual”
document.

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 49 of 77

cctalk coin processing

Fault Events
During start-up the cctalk command “Do Self Test” is sent to the acceptor. The response is queued
as an event with the first byte of the response in RawEvent and an EventCode type of
IMHEI_COIN_NOW_OK or IMHEI_COIN_UNIT_REPORTED_FAULT.

If the unit is reset (the sequence number is found to be zero) or repeated messages are ignored
IMHEI_COIN_UNIT_RESET or IMHEI_COIN_UNIT_TIMEOUT event is queued. Whenever any of these faults
have been reported, the handler will continually “poll” the acceptor with “Do Self Test” commands
until a “non-faulty” response is returned.

Coin Events
When the acceptor reports an event other than an accepted coin, this is queued as a
COIN_DISPENSER_EVENT event, with the actual event byte reported in RawEvent.

The events categorised as OUTPUT_PROBLEM, JAM & INTERNAL_PROBLEM, are also reported as self-

test faults on some acceptors. They are therefore automatically latched as faults (without sending the self-test
fault) and hence a NOW_OK “fault” is generated when they clear.

The handler classifies cctalk events as:

Event
Number

Meaning Event Classification

 1 Coin Rejected REJECTED

 2 Coin Inhibited INHIBITED

 3 Multiple window REJECTED

 4 Wake-up timeout JAM

 5 Validation timeout JAM

 6 Credit sensor timeout JAM

 7 Sorter opto timeout OUTPUT_PROBLEM

 8 2nd close coin error REJECTED

 9 Accept gate not ready REJECTED

 10 Credit sensor not ready REJECTED

 11 Sorter not ready REJECTED

 12 Reject coin not cleared REJECTED

 13 Validation sensor not ready REJECTED

 14 Credit sensor blocked JAM

 15 Sorter opto blocked OUTPUT_PROBLEM

 16 Credit sequence error FRAUD

 17 Coin going backwards FRAUD

 18 Coin too fast (over credit sensor) FRAUD

 19 Coin too slow (over credit sensor) FRAUD

 20 C.O.S. mechanism activated (coin-on-string) FRAUD

 21 DCE opto timeout FRAUD

 22 DCE opto not seen FRAUD

 23 Credit sensor reached too early FRAUD

 24 Reject coin (repeated sequential trip) FRAUD

 25 Reject slug FRAUD

 26 Reject sensor blocked JAM

 27 Games overload INTERNAL_PROBLEM

 28 Max. coin meter pulses exceeded INTERNAL_PROBLEM

 128-159 Inhibited Coin INHIBITED

 254 Flight Deck Open RETURN

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 50 of 77

cctalk note processing

Fault Events
Shortly after start-up the cctalk command “Do Self Test” is sent to the acceptor. The response is
queued as an event with the first byte of the response in RawEvent and an EventCode type of
IMHEI_NOTE_NOW_OK or IMHEI_NOTE_UNIT_REPORTED_FAULT.

Some acceptors reply to this command with a NAK, these are reported as
IMHEI_NOTE_SELF_TEST_REFUSED.

If the unit is reset (the sequence number is found to be zero) or repeated messages are ignored
IMHEI_NOTE_UNIT_RESET or IMHEI_NOTE_UNIT_TIMEOUT event is queued.

Whenever any of these faults have been reported, the handler will continually “poll” the acceptor with
“Do Self Test” commands until a “non-faulty” response is returned.

Note Events
When the acceptor reports an event other than an accepted note, this is queued as an
NOTE_DISPENSER_EVENT event, with the actual event byte reported in RawEvent.

The events categorised as MISAREAD, JAM & INTERNAL_PROBLEM, are also reported as self-test
faults on some acceptors. They are therefore automatically latched as faults (without sending the
self-test fault) and hence a NOW_OK “fault” is generated when they clear.

The handler classifies cctalk events as:

Event
Number

Meaning Event Classification

0 Master inhibit active INHIBITED

 1 Bill returned from escrow RETURN

 2 Invalid bill (due to validation fail) REJECTED

 3 Invalid bill (due to transport problem) REJECTED

 4 Inhibited bill (on serial) INHIBITED

 5 Inhibited bill (on DIP switches) INHIBITED

 6 Bill jammed in transport (unsafe mode) MISREAD

 7 Bill jammed in stacker OUTPUT_PROBLEM

 8 Bill pulled backwards FRAUD

 9 Bill tamper FRAUD

10 Stacker OK OUTPUT_FIXED

11 Stacker removed OUTPUT_PROBLEM

12 Stacker inserted OUTPUT_FIXED

13 Stacker faulty OUTPUT_PROBLEM

14 Stacker full OUTPUT_PROBLEM

15 Stacker jammed OUTPUT_PROBLEM

16 Bill jammed in transport (safe mode) JAM

17 Opto fraud detected FRAUD

18 String fraud detected FRAUD

19 Anti-string mechanism faulty INTERNAL_PROBLEM

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 51 of 77

cctalk hopper processing
This is divided into two parts, the processing associate with reporting the ongoing ability of a
functioning hopper to pay out coins, and that associated with checking that the hopper is operational.

Both of these require a “Test Hopper” command to be sent to the unit, but the reporting mechanism is
different.

The ongoing ability to pay out is reported as the Status field in the dispenser block, the results of the
regular check are reported as “self-test” events.

Note: that when a Payout is issued the results of any “Self Test” are ignored - the dispense coins
command is sent to the hopper regardless.

On a regular basis the “Test Hopper” command is sent to the each hopper when otherwise idle, and
the result evaluated. After start-up, and regularly thereafter, a IMHEI_COIN_DISPENSER_NOW_OK is
reported if there are no errors.

The defined return from this command is a string of up to 4 bytes (depending upon the exact unit)
with one (or theoretically more) bits set to indicate the problem.

The action of Paylink is to regard these bytes as containing 32 bits. The bits are classified by this
section of Paylink as an Error, a Fraud attempt, a Payout result or “information only”. Paylink scans
along these bits looking for the first Error or Fraud bit that is non-zero. Other bits are ignored.

The bit number of this first bit (i.e. a number in the range 0 to 31) is then returned in RawEvent and
an EventCode of either IMHEI_COIN_DISPENSER_FRAUD_ATTEMPT or IMHEI_COIN_DISPENSER_REPORTED_

FAULT

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 52 of 77

For reference, the bit numbers, and their classification are:

Bit
Number

Meaning Event Classification Payout Result

0 Jammed Information only PAY_JAMMED
1 Empty Information only PAY_EMPTY
2 Reversed Information only
3 Idle fraud blocked Fraud PAY_FRAUD
4 Idle fraud short Fraud PAY_FRAUD
5 Payout blocked Information only PAY_FAILED_BLOCKED
6 Power up Information only
7 Disabled Fault
8 Fraud short Fraud PAY_FRAUD
9 Sngle coin mode Fault
10 Chksum a Fault
11 Chksum b Fault
12 Chksum c Fault
13 Chksum d Fault
14 Pwr fail during write Fault
15 Pin locked Fault
16 Powerdown during payout Information only
17 Unknown coin type paid Fault
18 Pin number incorrect Fault
19 Incorrect cipher key Fault
20 Unused Information only
21 Unused Information only
22 Unused Information only
23 Unused Information only
24 Unused Information only
25 Unused Information only
26 Unused Information only
27 Unused Information only
28 Unused Information only
29 Unused Information only
30 Use other hopper Information only PAY_NOT_EXACT
31 Opto fraud Fraud PAY_FRAUD

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 53 of 77

ID-003 note processing

Fault Events
There is no specific self-test command with ID-003, the acceptor reports faults in response to a poll.
When the protocol handler completes its initialisation, the first idle response is reported as
IMHEI_NOTE_NOW_OK.

When a FAILURE response to a status poll is received, this is reported as an
IMHEI_NOTE_UNIT_REPORTED_FAULT event. A failure status is expected to be continually reported by
the acceptor until it is cleared. When the acceptor again reports IDLING, then an IMHEI_NOTE_NOW_OK
event is reported.

Other “non normal” responses to a status poll are reported as events as they are receive according to
the table below.

In a similar way to the action for faults, OUTPUT_FIXED is reported when events that translate to
OUTPUT_PROBLEM are cleared.

Status
Value

Name Event Classification

0x17 REJECTING REJECTED

0x41 POWER UP WITH BILL IN ACCEPTOR REJECTED

0x42 POWER UP WITH BILL IN STACKER REJECTED

0x43 STACKER FULL OUTPUT_PROBLEM

0x44 STACKER OPEN OUTPUT_PROBLEM

0x45 JAM IN ACCEPTOR JAM

0x46 JAM IN STACKER OUTPUT_PROBLEM

0x47 PAUSE UNKNOWN

0x48 CHEATED FRAUD

0x49 FAILURE - Fault Report

0x4A COMMUNICATION ERROR INTERNAL_PROBLEM

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 54 of 77

CCNet note processing

Fault Events
There is no specific self test command with CCNet, the acceptor reports faults in response to a poll.
When the protocol handler completes its initialisation, the first idle response is reported as
IMHEI_NOTE_NOW_OK.

When a FAILURE response to a status poll is received, this is reported as an
IMHEI_NOTE_UNIT_REPORTED_FAULT event. A failure status is expected to be continually reported by
the acceptor until it is cleared. When the acceptor again reports IDLING, then an IMHEI_NOTE_NOW_OK
event is reported.

Other “non normal” responses to a status poll are reported as events as they are receive according to
the table below.

In a similar way to the action for faults, OUTPUT_FIXED is reported when events that translate to
OUTPUT_PROBLEM are cleared.

Most status values are part of the normal running of the system, the following statuses are regardless
as reporting unusual / fault events and are reported through the event system.

Status Value Name Event Classification RawEvent

0x1C 0x68 REJECTING INHIBITED 0x68

0x1C nn REJECTING REJECTED nn

0x41 DROP CASSETTE FULL OUTPUT_PROBLEM 0x41

0x42 DROP CASSETTE REMOVED OUTPUT_PROBLEM 0x42

0x43 JAM IN ACCEPTOR MISREAD 0x43

0x44 JAM IN STACKER OUTPUT_PROBLEM 0x44

0x45 CHEATED FRAUD 0x45

0x47 nn GENERIC BB ERROR FAULT nn

0x82 nn RETURNED RETURN nn

0x14 IDLING Generate an OK_NOW or OUTPUT_FIXED
if in fault / output problem. 0x19 DISABLED

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 55 of 77

EBDS (SC/SCR) note processing

Fault Events
Not all EBDS acceptors support self-test. Where they do, a self-test fail is reported with the index of
the first of the 20 integers that has reported an error.
When self-test does not report any error, and when the protocol handler completes its initialisation,
the first idle response is reported as IMHEI_NOTE_NOW_OK.

When a status poll response is received with fault bits set, the bit numbers that are set are reported in
the RawEvent data field in one or more independent event.

Bit Number Name Reported as

0 EBDS_CHEATED IMHEI_NOTE_FRAUD_ATTEMPT

1 EBDS_REJECTED IMHEI_NOTE_REJECT_NOTE

2 EBDS_JAMMED IMHEI_NOTE_ACCEPTOR_JAM

3 EBDS_STACKER_FULL IMHEI_NOTE_STACKER_PROBLEM

4 EBDS_CASSETTE_MISSING IMHEI_NOTE_STACKER_PROBLEM

5 EBDS_PAUSED IMHEI_NOTE_UNCLASSIFIED_EVENT

6 EBDS_CALIBRATING IMHEI_NOTE_UNCLASSIFIED_EVENT

9 EBDS_INVALID_COMMAND IMHEI_NOTE_UNCLASSIFIED_EVENT

10 EBDS_FAILURE IMHEI_NOTE_UNCLASSIFIED_EVENT

14 EBDS_TRANSPORT_OPEN IMHEI_NOTE_STACKER_PROBLEM

For events reported as IMHEI_NOTE_STACKER_PROBLEM an event of IMHEI_NOTE_STACKER_FIXED will be
reported when the bit clears. For other bits an event of IMHEI_NOTE_NOW_OK will be reported when the
bit clears.

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 56 of 77

BCR / CR10x Fault Processing
The current Paylink API design only allows for a single byte of error data. The BCR / CR10x devices
provide 3 bytes, and so to allow for this the initial fault report is followed by an additional information
byte. The contents of these two bytes are described here:

This input to this description is a merged list of error codes from the documents:
CR100 TSP182 Issue 0.9.1 and Bulk Coin Recycler TSP151 Issue 3.8

All error codes will always be reported as:

 EventCode = IMHEI_COIN_UNIT_REPORTED_FAULT

 RawEvent = Value from Code column

 Index = BCR Acceptor

In addition, those error codes marked in blue below will be reported with a subsequent event as:

 Event Code = IMHEI_COIN_DISPENSER_REPORTED_FAULT

 RawEvent = Optional Extra Info for Code 26
 Optional Extra Info + 100 for Code 27

 Index = Corresponding BCR Hopper

and those error codes marked in Yellow below will be reported with a subsequent event as:

 Event Code = IMHEI_COIN_INTERNAL_PROBLEM

 RawEvent = Value from Last Column + Optional Extra Info

Code Fault Optional Extra Info Only Stat
1

Stat
2

Yellow
Offset

0 OK (no fault detected) 0 - 0

1 EEPROM checksum corrupted 1 = Coin acceptor checksum error 100 103

 2 = Controller checksum error CR 255 255

2 Fault on inductive coils 1 to 5 = Validation coil 100 103

 6 = Singulator belt sensor
(sensor missing)

 255 255

 7 = Coin return sensor
(sensor missing)

 255 255

 8 = Singulator belt sensor
(active but no belt move)

 255 255

 9 = Coin return sensor
(active but no belt move)

 255 255

 10 = Coin acceptor wake-up CR 100 103

3 Fault on credit sensor 0 100 103

8 Fault on sorter exit sensors 1 = 4-way sorter
(blocked)

BCR 100 101

 2 = 8-way diverter
(blocked)

BCR 100 101

 3 = 8-way diverter
(timeout, coin not seen)

BCR 100 104

 11 to 18 = Carousel gate CR 255 255

9 NVRAM checksum corrupted 0 255 255

19 Fault on coin return mechanism 0 100 101

22 Fault on thermistor 0 100 103

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 57 of 77

Code Fault Optional Extra Info Only Stat

1
Stat

2

Yellow
Offset

23 Payout motor fault 1 = Singulator (jammed) 255 255 0

 2 = Escalator (jammed) BCR 255 255 0

 2 = Conveyor (jammed) CR 255 255 0

 3 = Motorised reject 255 255 0

 4 = Singulator (no tach) 255 255 0

 5 = Escalator (no tach) BCR 255 255 0

 5 = Conveyor (no tachs) CR 255 255 0

 6 = Sing. (sensor block) 255 10 0

 7 = Esc. (sensor block) 255 11 0

 8 = Carousel (no tachs) CR 255 255 0

 9 = Carousel (jammed) CR 255 255 0

 10 = Coin rotor – fault CR 100 103 0

 11 = Coin rotor – tachs CR 100 103 0

 12 = Coin rotor – diameter opto missing CR 100 103 0

 13 = Coin rotor – park opto missing CR 100 103 0

 14 = Coin rotor – coin jam CR 100 101 0

 15 = Coin rotor – excessive jam-jogs CR 100 101 0

 16 = Singulator belt broken BCR 255 255 0

 17 = Escalator belt broken BCR 255 255 0

26 Payout sensor fault Hopper = 1 to 8 Opto blocked payout 1to8 2

 Hopper = 11 to 18 Opto blocked idle 1to8 3

 Hopper = 21 to 28 Opto short-circuit idle 1to8 3

 Hopper = 31 to 38 Opto short-circuit payout 1to8 3

 Hopper = 41 to 48 Max. current exceeded 1to8 4

 Hopper = 51 to 58 Bad EEPROM checksum 1to8 4

 Hopper = 61 to 68 Power fail on write 1to8 4

27 Level sensor error 1 = Hopper 1 1 4

 2 = Hopper 2 2 4

 3 = Hopper 3 3 4

 4 = Hopper 4 4 4

 5 = Hopper 5 5 4

 6 = Hopper 6 6 4

 7 = Hopper 7 CR 7 4

 8 = Hopper 8 CR 8 4

32 Internal comms bad 0 (parallel interface to validator) CR 255 255

33 Supply voltage outside 1 = +24V rail 255 255

 operating limits 2 = +5V rail 255 255

35 D.C.E. fault 0, 1 = Blocked ? 100

 2 = Broken 100 103

40 RAM test fail 0 255 255

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 58 of 77

Code Fault Optional Extra Info Only Stat

1
Stat

2

Yellow
Offset

48 Slave device not 1 = Cashbox missing 250 252 20

 responding 2 = Hopper tray missing 255 255 20

 3 = No hoppers fitted 255 255 20

 4 = Hopper ID mis-match 255 255 20

 5 = Coin acceptor missing 103 1 20

 6 = No hop. lowest coin 255 255 20

 7 = Mixed currency CA 255 255 20

 8 = Mixed currency HO 255 255 20

 9 = I2C communication error CR 255 255 20

49 Fault on opto sensor 1 = Reserved - - 40

 2 = Cashbox full sensor 250 251 40

 3 = Wake-up sensor (Avalanche sensor) 255 255 40

 4 = Exit cup full sensor 255 255 40

 5 = Accept flap CR 255 255 40

 6 = Cashbox flap CR 255 255 40

 7 = Carousel track opto CR 255 255 40

 8 = Carousel pusher opto (credit sensor) CR 255 255 40

 9 = Coin acceptor diameter opto CR 100 103 40

 10 = Coin acceptor park opto CR 100 103 40

50 Battery fault 0 255 255

51 Door open 1 = Singulator door 255 255 60

 2 = Escalator door BCR 255 255 60

 3 = Carousel lid CR 255 255 60

52 Microswitch fault 1 = Reject home 255 255

53 RTC fault 1 = Read / write fail 255 255

54 Firmware error 1 = CA bad firmware ID 255 255

 2 = CA firmware too old 255 255

 3 = HO bad firmware ID 255 255

 4 = HO firmware too old 255 255

 5 = HO bad build ID 255 255

 6 = CA bad build ID 255 255

 7 = Unhandled CA event 255 255

 8 = CA programming err. 255 255

 9 = Bad DB hop. config. 255 3to8

 10 = Prog. checksum err. 255 9

 11 = Error during upgrade 255 9

 12 = Stack overflow 255 9

55 Initialisation error 1 = Flush timeout 255 255

56 Supply current outside 1 = +5V rail CR 255 255

 operating limits 2 = Hopper rail CR 255 255

 3 = Solenoid rail CR 255 255

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 59 of 77

CLS Fault Processing
All errors are reported against the acceptor device, except for hopper error 0x65 (lost connection)
which is reported against the failing hopper.

The current Paylink API design only allows for a single byte of error data. The CLS provides 2 bytes
in the event codes.

To allow for this the error byte is encoded when they are reported following the CLS entering an error
state.

The reported errors come from two sources, the CLS controller and the acceptor, but can be merged
into one list as they do not have overlapping values in the 2nd byte. (All acceptor faults have a first
byte value of 0x20)

The encoding for the single byte in the RawEvent byte is as follows (in hex):

RawEvent Byte Two byte error code

01 - 03 00 01 - 00 03

04 - 07 00 10 - 00 13

08 - 0B 00 20 - 00 23

0C - 0F 00 30 - 00 33

10 - 6F 20 10 - 20 6F

70 - 7F 11 D0 - 11 DF

B0 - BF 0B 00 - 0B 0F

D0 - DF 0D 00 - 0D 0F

E0 - EF 0E 00 - 0E 0F

To allow the application to confirm the encoding if necessary, an event of
IMHEI_COIN_INTERNAL_PROBLEM is also queued, with the RawEvent field containing the first of the two
error bytes.

F53/F56 Fault Processing

The F56 is complex mechanically, so a jam situation is reported as an error for a number of specific
reasons, which are reported via the Event mechanism.

The F56 handler generates events to notify the application of these jam situations. Specifically, the
handler will return an

 EvenCode = IMHEI_NOTE_DISPENSER_PROBLEM

 RawEvent = the returned F56 error code (as described in the Fujitsu “F56-BDU ERROR
CODE LIST” manual.)

 Index = F56 Cassette.

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 60 of 77

Firmware reprogramming
All firmware releases for Standard Paylink are distributed as self-extracting Windows executables. As
well as those contained in the distribution, they are also accessible individually on the Internet at:
http://www.aardvark.eu.com/products/milan/downloads.htm. as zip files Each executable name
includes Vx-x-x-x, where the sequence after the V identifies the version as described at the start.

The same Windows programming utility is contained in all the firmware release files. When run
normally it will check that a Standard Paylink unit is installed and accessible, and will then compare
the version of the firmware that it contains with version installed on the Interface. If they differ it will
then load the new firmware:

if they are the same it will display the (matching) details for 10 seconds and then automatically exit. (If
a parameter is provided on the command, then the check is silent if it passes; the waiting display
does not appear.)

While running a “Configure” button is accessible. This can be used to access two advanced features,
“Startup Checking” and “Programming”.

“Startup Configuration” provides the ability to “Set” and “Clear” an entry in the Windows registry
that will silently run this copy of the programming utility at system Startup. If this entry is Set, it
ensures that, if a unit is installed with a different version, the firmware packaged with this copy of the
programming utility is loaded onto it.

Note: As the Set entry is for the programming utility itself, in order to use this facility the programming
utility must have been saved to a folder on the hard disc and then run from that location.

http://www.aardvark.eu.com/products/milan/downloads.htm

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 61 of 77

The “Program Card” option will normally only be used by expert users, or under instruction from a
support technician. The following two facilities are available:
1. The image packaged with the executable can be overwritten (for this execution only) by that

contained in a S-Record file.
2. The current image (either packaged or loaded) can be written to the Milan Interface (regardless

of whether the version matches).

Command Line Options
Three options are accepted on the command line, the first two are for use primarily from a remote
PC.

/Force - will automatically re-program the Milan unit even if the images match.

/Nogui - will never display anything on the screen and will report progress to stdout or a console
window, if either is available.

/Check - will cause the loader to exit without showing an window if the Milan firmware matches, and
has no errors.

Limitations
A limitation of this programming utility is that a functional release must be executing on the unit. In the
event that an earlier or non-functional version is loaded, you will need a special serial cable, the
Hitachi programming utility FlashSimple and an S-Record (.a37) file.

For full details on using these, please contact us.

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 62 of 77

Milan / Paylink Driver Program Configuration
An essential component of the Paylink system is the Driver program, and the method chosen to
specify the configuration of the system is to describe the peripheral configuration in a simple text file.

With the standard (metal box) Paylink unit, when contact is established between the Driver program
and the unit this file is downloaded to the Milan / Paylink unit as the system starts up.

The unit compares the configuration in the file specified with that stored on the Paylink. If there are
any differences, the new configuration is stored and the Paylink unit resets to use the updated
configuration.

When a system uses modern Paylink Lite unit(s), or for a purely USB system, the this file configures
the code running in the Paylink driver program itself

Driver Parameters
When Paylink.exe / AESCDriver is run it needs to find this configuration file. The path to the
configuration file can be provided as a single parameter, if no parameter is provided then it will try to
read a file called “Standard.cfg” in the folder from which it is run.

Some of the configuration of the driver program itself can be accomplished by two means, with
identical results, either by parameters in the configuration or on the command line itself

For Windows, switch parameters can be used as follows:

/S <Paylink Serial> is used in multiple Paylink installations, and specifies the serial number of the

Paylink device that this driver is to connect to.
/L <Log File Name> is the full path to the desired log file.
/Z <K Bytes> is the maximum size the log file is allowed to reach. If it reaches this size, then

it is renamed with a “.old” extension added and a new file started. If omitted,
the maximum size is 128K bytes.

/H if this is used no window or taskbar Icon is displayed.
/V if this is used a normal window is shown on the screen.

For Linux, switch parameters can be used as follows:

-s <Paylink Serial> is used in multiple Paylink installations, and specifies the serial number of the

Paylink device that this driver is to connect to.
-p Run this driver program at a high priority.

 (10 less than the SCHED_RR maximum)
-v Output detailed driver diagnostics to stdout. (See RUN VISIBLE)
-t (Not for general use) display internal USB link messages.

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 63 of 77

Multiple Paylink Unit Support.
Although the Paylink system was designed around the idea of a single Paylink unit being connected
to a PC, facilities are provided to support multiple Paylink units.

The only change that is visible to a programmer when multiple units are in use is that the
OpenSpecificMHE is used to associate the program with a specific one one of the multiple Paylink
unit interface areas.

It is envisaged that in a system with multiple Paylink units a separate instance of the program will be
running for each Paylink unit interface area and a supervisory level will start the different programs.
This is not compulsory as OpenSpecificMHE can be called repeatedly with different parameters so
as to switch between Paylink unit interface areas.

Unit Identification
The USB interface chip on a Paylink unit provides a “Serial Number”. This is pre-set during
manufacture to AE000001 - but is not used or checked in a system that does not have multiple units.

When the Paylink / AECDriver program is run, the default is for it to search all USB devices that may
be a Paylink, and connect to the first one it finds. When the /S=<SerialNo> switch is provided on the
command line, this has two effects:

Firstly, it causes the driver program to create a named Paylink unit interface area, which can then be
connected to by an OpenSpecificMHE call with a matching parameter.
Secondly it causes the driver program to search all USB devices that may be a Paylink until it finds
one with a matching programmed serial number.

The serial number is not associated with the Paylink firmware, and any release of Paylink firmware
may be used in a multiple Paylink system. The (Windows) PaylinkSerial utility is available as a part
of the released SDK, which takes as a parameter a serial number and programs it into the only
Paylink unit currently connected to the system.

Operating modes
On Intel platforms and the Raspeberry Pi, the Paylink system can run in one of five different modes.
These do not need to be specified explicitly in the configuration file, but are the inevitable
consequence of the parameters in the configuration file.

All Paylink configurations require the presence of some Paylink hardware. This hardware may be a
full Paylink unit, a Paylink Lite interface or a micro-Paylink dongle.

The five modes that Paylink can run in are:
Standard Paylink: Here the peripherals are controlled by the firmware within the external Paylink

unit. This is the “normal” / default mode for the Paylink driver. This is the only
mode available on all Linux distributions.

Paylink Lite: Here the peripherals are controlled by the PC driver program, using the Paylink

Lite 2 interface to access the peripherals. This mode will be used where at least
one Protocol is specified as “on Paylink Lite”. On Linux this requires the Paylink
executable, which is only available for Intel and Raspberry Pi distributions.

Micro Paylink: Here the peripherals are (only) CPI USB peripherals controlled by the PC driver

program, with a micro-Paylink dongle providing the authorisation. This mode will
be used where a “Using Dongle” line is present in the System section. On Linux
this requires the Paylink executable, which is only available for Intel and
Raspberry Pi distributions.

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 64 of 77

Merged Paylink: Here the configuration file specifies normal Paylink peripherals and Crane PI
USB peripherals as well. The two sets of peripherals are merged together by the
driver program, and the result present as a unified whole. This mode is selected
where USB peripherals are specified and a “Using Dongle” line is not present.
On Linux this requires the Paylink executable, which is only available for Intel
and Raspberry Pi distributions.

Merged Lite: Here the configuration file specifies Crane PI USB peripherals and at least one

Protocol that is specified as “on Paylink Lite”. The two sets of peripherals are
merged together by the driver program, and the result present as a unified
whole. On Linux this requires the Paylink executable, which is only available for
Intel and Raspberry Pi distributions.

Note: If only USB peripherals are specified, but the “Using Dongle” line is not present in the System

section, then the system will default to expecting a normal external Paylink to be connected -
that will continue to support the switches and meter.

External Paylink Peripheral Specification

The Paylink unit contains two types of interface:

• Interfaces to specific hardware, where the

peripheral in question is essentially fully described
by the hardware.

• General interfaces to peripherals where one of the
Milan / Paylink can be connected to many different
peripherals.

The first sort of interface is identified as connectors 3, 4,
6, 10 & 12 on the Paylink lid.

These connectors are provided to connect
Milan / Paylink to an SEC meter, switch inputs and
LEDs or other outputs.

These interfaces may be connected or not connected,
but the item they are connected to is completely defined
by the electrical connection (so far as Milan / Paylink is
known)

The second sort of interfaces is identified as connectors
1, 8, 9 and 11 on the Paylink lid.

These connectors provide the connections to peripherals concerned with handling currency. In this
case there are many possible peripherals that can be connected to the Milan / Paylink unit. The
peripherals actually connected are specified in the configuration file.

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 65 of 77

The Configuration File
The single parameter to Paylink.exe / AESCDriver.exe is a simple text file, containing a set of
keywords and values that describe the configuration of the Paylink. Line ends are never significant,
and anything on a line after a slash (/) character is ignored.

This section describes the make-up of a configuration file. In the following description:
 UPERCASE words represent keywords, which must be spelt as shown, but can be in any case.

[Optional] sections are enclosed in square brackets and represent sections that can be

included either to give further details on the item, or to make the “English” read
better.

< Values > are enclosed in angle brackets. Values can be number expressed in decimal or

hex, or, in some cases, can be pre-defined keywords. A string of digits is held to be
decimal number, hex numbers can either start with 0x or end in H.

| Shows that one of the two values on either side if the symbol must be included.

There are three top level keywords:
PROTOCOL - Which describes the peripherals connected to the Paylink’s system.
SYSTEM - Which defines the ways in which the overall running of Paylink is modified.
DRIVER - Which gives the driver itself details on how it should run.

Note that to help produce configuration files that are readable, there are a few synonyms and
“padding” keywords.

The keywords AT, AND, IS, BY, ON & WITH are all ignored when placed at “obvious” places in the
file.
The keywords BILL, BILLS, NOTE & NOTES are all equivalent, and can be interchanged at will.
The keywords MAX, MAXIMUM & FLOAT are all equivalent, and can be interchanged at will.
The keywords CONNECTOR & PORT are equivalent, and can be interchanged at will.

In general plural keywords are equivalent to singular.

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 66 of 77

DRIVER Details
The DRIVER keyword introduces a section of configuration to control the driver program itself:

RUN HIDDEN | VISIBLE
 On Windows, this controls the Driver window (independently from the presence of a log file)

• If HIDDEN is specified, then no window or taskbar Icon are displayed.
• If VISBLE is specified, then a normal window is shown on the screen.
• If the item is omitted, then a Taskbar Icon appears, but the window is minimised.

 On Linux, RUN VISIBLE causes the Paylink log to be output to stdout.

USE GLOBAL SEGMENT
 On Windows only this specifies that shared memory segment, which is used to communicate

with the application, should be in the Global namespace.
 This enables IIS to see a normal mode driver, but requires the driver to run with elevated

privilege.

LOGFILE “<Name>” [SIZE <K bytes>]

This specifies that a log file is to be generated.

<Name> is the full path to the desired log file, the “ symbols are compulsory even if there are

no spaces in the name.
<K Bytes> is the maximum size the log file is allowed to reach. If it reaches this size, then it is
renamed with a “.old” extension added and a new file started.
If SIZE is omitted, the maximum size is 128K bytes.

SERIAL [NUMBER} <Paylink Serial>

This is used in multiple Paylink installations, and specifies the serial number of the Paylink
device that this driver is to connect to. (This is also available as a Driver program option.)

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 67 of 77

SYSTEM Details
The SYSTEM keyword introduces a section of overall configuration, which includes one or more of:

|USING DONGLE
 This causes the Paylink driver program to look for a authorization dongle on a system that

only use USB connections to devices.

SIMULTANEOUS HOPPERS <Count>
 Earlier versions of Paylink would only run a single hopper at a time in order to protect the

power supplies. If an installation has the power to run multiple hoppers at once, then this
parameter can be used to increase the number of simultaneously running hoppers.

WATCHDOG [On] [OUTPUT] <Pin>
 The CheckOperation() facility already allows Paylink to discover that PC application is no

longer in contact, and to inhibit all the peripherals. This entry causes output <pin> on the
Paylink to be driven only when Paylink is in normal operation, to allow for the control of
arbitrary external equipment.

CODE VERSION [BETA | <Number>]
 The Windows version of the Paylink driver checks to see if the firmware is a FULL release,

and puts up a warning message if not. This entry allows for the supression of such a
message.

POWER ON [ON] [OUTPUT] <Pin> DELAY <MSec>
 To allow for the power on sequencing of the elements within a cabinet, this allows the Paylink

device to control an output that turns on a specific time after the Paylink powers up. This
entry causes output <pin> on the Paylink to be driven <Msec> milliseconds after the Paylink
itself powers up.

POWER ON RESET [ON] [OUTPUT] <Pin> DELAY <MSec>
 For the situation where a Paylink can be used to correctly reset a PC, this generates a reset

pulse of <MSec> at startup, unless the PC driver establishes communication within 5
seconds.

MECHANICAL METER <Meter No> [ON] [OUTPUT] <pin>
 This entry can repeated up to 8 times. Each entry defines to the Paylink meter functionality

that a mechanical meter <Meter No> is connect to output <Pin>. (More details are above.)

POWER FAIL [ON] [INPUT] <Pin>
 This does not appear anywhere in the API. If used, this is a switch connection that should be

shorted to ground whenever the power supply is satisfactory and go open circuit as soon as
there is a problem. This input is used in two places:
1. As soon as this output triggers, all acceptors are disabled. This primarily allows coin

acceptors to reject coins that will not complete correct acceptance before the power fails
complete.

2. The mechanical meter processing will not start a pulse if this input is not satisfactory.
This removes the possibility of a pulse being cut short by a power failure.

COLOURS <Red D> <Green D> <Blue D> <Red E> <Green E> <Blue E>
 This defines the system acceptor colours, as six numbers is the range 0 to 255. The first 3

numbers define a colour to be used for a disabled acceptor, the 2
nd

 three numbers define a
colour to be used for an enabled acceptor.

 At present this is only implemented on the Innovative SmartPayout.

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 68 of 77

PROTOCOL Details

PROTOCOL <Name> [ON|FROM] [AUX] [CONNECTOR | PORT | PAYLINK | DLL] <Connector>
 This introduces a section describing the usage of the named protocol on the specified

connector.
DLL indicates this is a DLL interface, not via a connector

The Connector is one of the following:

CCTALK or 8 On Paylink, the six way connector near the USB cable.
MDB or 1 On Paylink, the three way Molex KK at the other end to the USB

cable.
RJ45 or ARDAC or 9 On Paylink, RS232 RJ45 connector near the USB cable.
GEN2 or RS232 or 11 On Paylink, RS232 seven way connector.
RS232-2 On Paylink Two, the five way connector.
RS232-3 On Paylink Two, the four way connector.
USB A direct to peripherals connection for a CPI USB peripheral.
LITE The peripherals are connected to the PC via a Paylink Lite.
<DLL Name> The peripherals are connected to the PC via this DLL interface.

Note: The cctalk and MDB protocols are usually used together with unique electrical levels on the
connection. Standard Paylink provides these levels on the relevant connectors and so it would be
unlikely that these would specify other than the dedicated connector - but doing so is perfectly valid.

If you are using Paylink Lite V2 or Paylink MDB Lite, you specify LITE. If you wish to use more than
one Paylink Lite unit, the system automatically classifies the additional units as auxiliary in the
following ways:

Lite Units in the system cctalk MDB RS232

Base Lite V2 only x

Base MDB Lite only x

Base Lite V2 RS232 only x

Base Lite V2 → Aux MDB x x

Base Lite V2 → Aux RS232 x x

Base MDB Lite → Aux RS232 x x

Base Lite V2 → Aux RS232 & Aux MDB x x x

The system assumes that you are using a Lite device with a corresponding protocol.
(An Aux RS232 connection is handled by a specially programmed USB / RS232 converter, an Aux
MDB is a specially programmed MDB Lite, with no I/O)

The following protocols can be specified. With the exception of GEN2 and TFLEX, each protocol then
requires the devices it communicates with to be further specified.

CCTALK
CCNET
MDB
ID003
EBDS
MEIBNR
TFLEX | CX25 - CPI TFLEX / CX25 coin dispensers
CLS - CPI Coin Recycler
F56 | F53 | F400 - These are synonym of each other for the Fujitsu D-Level protocol.
MFS
GEN2 - The Future Logic ticket printer protocol.

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 69 of 77

CCTALK Device Definition
The cctalk protocol handler supports a potentially large number of note / bill acceptor, coin acceptor
and payout devices. Following the introductory PROTOCOL entry, all the ccctalk devices in use on
this installation have to be defined, as follows:

COIN [ACCEPTOR] [AT] <Address> [BNV <Key>] [CRC]
 This specifies that a coin acceptor is to be found at the specified cctalk <Address>, and may

specify that BNV encryption with the given key and / or that CRC message validation is used.
 Normally coin acceptors are at address 2, and do not use BNV or CRC messages.

BULK [ACCEPTOR] [AT] <Address> [BNV <Key>] [CRC]
 This specifies that a bulk coin acceptor is to be found at the specified cctalk <Address>, and

may specify that BNV encryption with the given key and / or that CRC message validation is
used. This device will receive special processing as described earlier in the document.

 Normally bulk coin acceptors are at address 2, and do not use BNV or CRC messages.

SMARTHOPPER [WITH] [ACCEPTOR] [AT] <Address> [BNV <Key>] [CRC]
 This specifies that an Innovative smart hopper is to be found at the specified cctalk

<Address>, and may specify that BNV encryption with the given key and / or that CRC
message validation is used. Smart hoppers are often at address 7, and probably do not use
BNV or CRC messages.

[WITH] [ACCEPTOR]

If the keyword ACCEPTOR is present then this indicated that Paylink should check and use
an acceptor connected locally to the SmartHopper device.

NOTE [ACCEPTOR] [AT] <Address> [No Reset] [BNV <Key>] [CRC]
BILL [ACCEPTOR] [AT] <Address> [No Reset] [BNV <Key>] [CRC]
 This specifies that a note / bill acceptor is to be found at the specified cctalk <Address>, and

may specify that BNV encryption with the given key and / or that CRC message validation is
used.

 Normally note / bill acceptors are at address 40 (28H), and often use a BNV key of 123456
and CRC message validation.

 The optional “No Reset” keyword supresses multiple resets performed as a part of cctalk
automatic note recovery.

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 70 of 77

<Type> RECYCLER [AT] <Address> [MAX <count> NOTES]
 This specifies that a note / bill recycler is to be found at the specified cctalk <Address>, and

may specify that BNV encryption with the given key and / or that CRC message validation is
used. As there is no standard specification for controlling a recycler, the <Type> also has to
be specified.

 Apart from the MERKUR device which does not use BNV, the device will be a DES type, and

hence there is no need to specify a BNV key as that is discovered at the same time as the
DES key.

 A <Type> from the following list can be used:

MERKUR - A recycler using the same commands as the Merkur MD100
device.

VEGA - A recycler using the same commands as the JCM Vega unit
NV11 - A recycler using the same commands as the Innovative NV11
NV200 | SMARTPAYOUT - A recycler using the same commands as the Innovative

NV200 / SmartPayout
ICT - A recycler using the same commands as the ICT BR2300

recycler.

MAX is only valid with Merkur, and specifies a maximum float level of <Count>

HOPPER [AT] <Address> [VALUE <Coin Value>] [AZKOYEN] [READOUT VALUE] [TIMEOUT
<Count>] [CRC]

 This specifies that a coin hopper is to be found at the specified cctalk <Address>, and may
specify that CRC message validation is used.

 Normally cctalk hoppers are at addresses that start at 3 and increase as more hoppers are

added. CPI hoppers can be addresses from 3 to 10.

 Hoppers require a significant amount of configuration. Any combination of the keywords in

any order can be used.

 Note that there are three different ways to specify the coin value; two in the configuration file

or the application can set a value that overrides any configured value. Any method can be
used, but Paylink will not use a hopper for which a value has not been set. (This may be a
desired operational mode.)

 [VALUE <Coin Value>]
 Specifies the (default) value in pence of the coins in this hopper. If neither of the other two

options are used, then this value is fixed.

 [READOUT VALUE]
 Specifies that the Hopper Eprom will be read during initialisation and any coin value found

will be used instead of the default (if any) established by the <Coin Value> entry.

 [AZKOYEN]
 The detailed implementation of cctalk commands differs between CPI and Azkoyen. This

keyword forces Azkoyen specific processing of the hopper. If the hopper replies to the
relevant initialisation message with a Manufacturer starting “Azk” then this processing is
selected automatically.

 [TIMEOUT <Count>]
 This specifies that the cctalk header 165 (Modify Variable Set) be used to change the

“payout timeout” value from its default of 10 seconds to <Count> periods of 1/3 second.
This is unlikely to work on hoppers not made by Crane PI.

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 71 of 77

Examples
Hopper at 03 Value 100 - is a hopper whose value is initialised to 100
Hopper at 03 Readout Value - is a hopper that is unusable unless a coin value can be

read out, or set by the application.
Hopper at 03 - is a hopper that is unusable unless the application sets a

coin value.
Hopper at 03 Value 100 Azkoyen - is a hopper whose value is initialised to 100 and that will

be unconditionally use the Azkoyen protocol variations.

NOTE ACCEPTOR [IS] ELITE
 This must follow a USB connector keyword, and specifies that an Elite note is connected

directly to the PC via a USB lead.

COIN RECYCLER [IS] CR01x | BCS
 This must follow a USB connector keyword, and specifies that the corresponding coin

recycler system is connected directly to the PC via a USB lead.

COIN RECYCLER [IS] BCR [MAX COINS | FLOAT <level>]
 This must follow a USB connector keyword, and specifies that a BCR coin recycler system is

connected directly to the PC via a USB lead. The optional parameter causes the Paylink
start-up code to send the appropriate message to set the level for the hoppers.

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 72 of 77

CCNet Device Definition
The CCNet protocol allows for addressable devices, although the RS232 electrical connection that is
normally used will only allow for a single device to be connected.

RECYCLER [AT] <Address> [SCALE [BY] <Scale Factor>] [EJECT BILL]

At present <Address> must be 1. This specifies that a B2B60, B2B100 or B2B300 bill
recycler is connected.

The bill values are obtained from their descriptions, but the recycler has no concept of a
denomination scale factor. Paylink assumes a default factor of 100 which is suitable for
Euro / Dollar / Pound systems, but other nationalities may specify a factor of 1.

The EJECT BILL keywords are only valid with a B2B60, and cause alternative payout
processing to be used, which ejects the bills from the unit as they are paid out, but which
prevents monitoring of the progress of the payout.

 OPTION BYTES <Byte 1> [<Byte 2> [<Byte 3>]]
This specifies one two or three options bytes as literal numbers to configure the recycler.

 SECURITY BYTES <Byte 1> [<Byte 2> [<Byte 3>]]
This specifies one two or three security bytes as literal numbers to configure the recycler.

 ESCROW <E Count> [AND RECYCLE <R Count>] BILLS ON CASSETTE <Cassette>
This can only follow a RECYCLER definition and specifies that extended escrow will be used
with it.

<Cassette> is the cassette number of the cassette on the acceptor that is to be used for
recycling operations. If RECYCLE is not specified, then this cassette will not be visible to the
application.

<E Count> is the maximum number of notes that can be held in Escrow, before they have to
all be stacked or returned. Escrow uses control storage within Paylink, and so should be set
to a sensible number.

<R Count> allows the recycler cassette to also be logically used as a normal recycler
cassette. Notes of the correct value that are logically stacked will be physically retained on
the cassette and be available for future payout operations.

The total number of notes that will actually fit on a cassette is dependent upon physical
constraints, so it is the user’s problem to ensure that <E Count> plus <R Count> notes will fit
onto a cassette.

ACCEPTOR [AT] <Address> [SCALE [BY] <Scale Factor>]
At present <Address> must be 3. This specifies that a CCNet bill acceptor is connected.

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 73 of 77

MDB Device Definition
The MDB protocol allows for two changer devices and for two bill acceptors as well as a cashless
device. This section states which are used:

CHANGER [AT] <Address>
 This specifies that a coin changer is to be found at the specified MDB <Address>.
 Normally MDB coin changers are at <Address> 08H

NOTE [ACCEPTOR] [AT] <Address>
BILL [ACCEPTOR] [AT] <Address>
 This specifies that a note / bill acceptor is to be found at the specified MDB <Address>.
 Normally MDB note / bill acceptors are at <Address> 30H

CASHLESS [ACCEPTOR] [AT] <Address> [IDLE [AMOUNT] <value>]
 This specifies that a cashless (card reader) is to be found at the specified MDB <Address>.
 Normally MDB cashless devices are at <Address> 10H

 The keyword IDLE indicates that level 3 processing should be used if possible. The <Value>

field is present because the API had to present a value. The value used here does not affect
Paylink processing in any way.

C2 [AT] <Address>
CF7000 [AT] <Address>
CF7xxx [AT] <Address>
 These are only allowed following a USB connection protocol line and specify that a USB

connected coin changer of the quoted type is set up at the specified MDB <Address>,
normally 08H.

ID003 Protocol
[WITH] ACCEPTOR | RECYCLER
 An ID003 communications line can connect to one single unit. This has to be specified as

either a “standard” ID003 note acceptor or to a recycler that is using the JCM UBA recycler
ID_003 extensions.

 (In the file this will typically follow the <Connector> on the same line.)

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 74 of 77

EBDS Protocol
[WITH] ACCEPTOR [MAX <Count> NOTES] [SCALE <Scale Factor>]
[WITH] RECYCLER [AND ESCROW] [NO RETURN]

 [MAX <Count> NOTES] [SCALE <Scale Factor>]
 An EBDS communications line can connect to one single unit. This has to be specified as

either a “standard” EBDS note acceptor or as an SCR recycler.

 The SCR recycler can run in one of three modes, the normal one is Single Note Escrow

The Multi Denomination Recycling mode is detected at run time – the interface is similar to
the SNE one and no configuration file setting is required.

The extended Multi Note Escrow is where a number of notes can be escrowed and if
necessary those specific ones returned - the optional AND ESCROW turns on extended
escrow for this processing.

 The NO RETURN keyword sets the SCR recycler to retain bills in the event that

communications with the Paylink is lost.

 EBDS bill acceptors can have a very large number of different note identities, which can

cause problems with the Paylink firmware. The MAX <Count> NOTES overrides the Paylink
default of 16. Where the number on the acceptor is greater than the number in Paylink,
Paylink folds the identities to overlap each other,

 The optional <Scale Factor> is a power of ten that is used to adjust the value read from the

acceptor before decoding into the Paylink value.

MEIBNR Protocol
[[WITH] ESCROW]
 An MEI BNR bill recycler connected to the Paylink system by the MEI supplied DLL. This line

causes the Paylink program to look for and attempt to load a DLL called MEIBNR.DLL. This
DLL will only load if the MEI supplied interface DLLs are available.

 The option ESCROW parameter indicates that extended escrow will be used with the

recycler. No parameters are supplied as the details of extended escrow storage are
completely handed by the device.

TFLEX | T-FLEX Protocol
 A Tflex coin dispenser can either be connected to a normal RS232 port, or USB.

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 75 of 77

CX25 Protocol
 A CX25 coin dispenser can either be connected to a normal RS232 port, or USB.

CLS Protocol
 A CLS Advance Coin Recycler can be connected to USB.

Gen2 Protocol
 A GEN2 communications line can connect to one singe Future Logic compatible ticket

printer.

F56 Protocol
[SPECIAL BILLS] [UK NOTES] DELIVERY [AT] NONE | FRONT | REAR [HOLD ON PROBLEM]

[POOL <Count>]
 An F56 communications line can connect to one singe Fujitsu F56 family bill / note dispenser.

 The SPECIAL BILLS keywords set the polymer note configuration flag.
 The UK NOTES keywords set the configuration flag for the new UK £5.

 Paylink requires the specification of the note delivery system, so as to know whether to issue

a delivery command, and which one.

 On an F56, the HOLD ON PROBLEM option sets a processing flag so that Paylink will only

deliver bills when there has been no problem in the payout.

 On an F56, the POOL option sets the number bills that are collected at the pool stage before

being delivered by Paylink. The default if this is not specified is 50 bills.

MFS Protocol
 An MFS communications line can connect to one singe MFS bill / note dispenser.

Cassettes
The cassettes for bill Dispensers can optionally be configured.

F53 / F56 / F400 cassettes are identified, usually by one or two magnets fitted into the case
that identify the bills / notes that are loaded into the cassette (not the position in the
machine). This section maps these identities onto specific notes.

CASSETTE [WITH] <Identity> VALUE <Value> [MAX <Max>] [MIN <Min>]

[THICKNESS] <thickness>]
 This specifies that the cassette with the given magnet <Identity> contains bills / notes with

the given value (in cents / pence).
 Paylink will default to allowing any size note to be accepted, but for added security correctly

encoded length and thickness bytes <Max>, <Min> and <thickness > can optionally be
specified and will be sent to the F53/F56 during cassette initialisation.

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 76 of 77

Examples
 F56 cassettes typically contain two magnets, and so a common standard configuration uses

the six two bit numbers:
Cassette 3 Value 10000

Cassette 5 Value 5000

Cassette 6 Value 2000

Cassette 9 Value 1000

Cassette 10 Value 500

Cassette 12 Value 100

 Less common is one magnet, but an alternative set uses the four one bit numbers:

Cassette 1 Value 10000

Cassette 2 Value 1000

Cassette 4 Value 500

Cassette 8 Value 100

Original Paylink Definition.
The definitions required to reproduce the original Paylink configuration are:

Protocol cctalk on connector cctalk

 Coin Acceptor at 2

 Note Acceptor at 40 BNV 123456 CRC

 Hopper at 3 Value 100 Readout Value

 Hopper at 4 Value 40 Readout Value

 Hopper at 5 Value 25 Readout Value

 Hopper at 6 Value 20 Readout Value

 Hopper at 7 Value 10 Readout Value

 Hopper at 8 Value 5 Readout Value

 Hopper at 9 Value 200 Readout Value

 Hopper at 10 Value 1 Readout Value

Protocol ID003 on connector RJ45

Protocol GEN2 on connector 11

Protocol MDB on connector MDB

 Changer at 08H

 Bill at 30H

Milan / Paylink System Manual Issue 1.8 02 August 2023

Copyright © 2022 Aardvark Embedded Solutions Ltd
Page 77 of 77

Disclaimer
This manual is intended only to assist the reader in the use of this product and
therefore Aardvark Embedded Solutions shall not be liable for any loss or damage
whatsoever arising from the use of any information or particulars in, or any incorrect
use of the product. Aardvark Embedded Solutions reserve the right to change
product specifications on any item without prior notice

	Table of Contents
	Revision History
	Introduction
	Purpose of Document
	Intended Audience
	Associated Document(s)
	Naming
	Supported Facilities
	Version Numbering
	Document Structure

	Paylink
	Installation
	Money representation
	Acceptance
	Payment
	Payout Function
	PaySpecific Function (1.12.6)
	Processing during payout.
	End of payout processing.

	Auxiliary Items
	Switch inputs
	Outputs
	Meters

	System Structure
	USB Connection
	USB Lead
	USB Driver Program.

	Paylink Lite
	Original (old) Paylink Lite

	Paylink Lite V2 ccTalk
	Paylink MDB Lite
	Paylink Lite V2 RS232
	Paylink Lite Aux units
	Troubleshooting

	Supported Peripherals
	Coin / Note Acceptor Usage Details
	Token Handling (Coin Ids) (1.11.x)
	Dual Currency Handling (Coin Ids) (1.11.x)
	Coin Routing.
	Route coins to a general cash box
	Route specific coins to a specific cash box.
	Route coins to a hopper until it is full then route it to a coin cash box.
	Paylink Routing - Flow Diagram

	Control of Motorised Acceptors
	ccTalk bulk coin acceptor (1.11.3)
	BCR / CR10x coin recyclers (1.11.5)

	MDB changer / BCR / CR10x / CLS recycler / SmartHopper support.
	MDB Payout
	MDB tube level monitoring.

	Read out of Acceptor Details (1.11.x)

	Coin / Note Dispenser Usage Details
	Dispenser Power Fail support.
	Detailed Device Support.
	Abandoning a payout in progress (1.11.3)
	Control of unwanted bill payout (1.11.3)

	Combi Hopper Support.
	Read out of Dispenser Details (1.11.x)

	Complex Dispenser (Recycler) Operations (1.12.3)
	Introduction
	Security
	DES Key Exchange

	Component Identity
	Routing
	Dispenser Destination Initialisation
	Routing Control.

	Bill Recycler Emptying
	Full Dump
	Partial Dump

	Payout Progress
	Cancelling Payout
	Notification of progress

	Power Fail
	Temporary power interruption
	Full power Failure
	Unpaid Bills

	Device Specific Functionality
	MEI BNR
	SCR Advance (EBDS)
	SCR Advance Mixed Denomination Recycler (1.12.12)
	JCM Vega (cctalk DES) & Innovative NV11 Recycler (DES)
	ICT BR2300 (Not available with DES)
	MDB Note recycler
	Innovative NV200 Recycler / SmartPayout (DES)
	Innovative SmartHopper coin recycler
	JCM UBA & iPro Recycler
	F56 / F53 Bill Dispenser
	F56 / F53 Jams
	Cashcode B2B-300
	Cashcode B2B-60
	Merkur 100

	Extended Escrow (1.12.6)
	Introduction
	Functionality
	Accepting Notes
	Returning Notes
	Keeping Notes

	Operation
	Abnormal Situations

	Cashless Processing
	Background
	Processing
	Credit Card Sequencing
	Credit Input Sequencing
	Credit Output Sequencing
	Ticket Sequencing

	Abnormal Processing
	MDB Cashless processing
	MDB Cashless Credit

	Example Cashless Transaction

	Meters / Counters
	Mechanical Meters (1.12.4)

	Events (Faults / Auditing)
	Introduction
	cctalk coin processing
	Fault Events
	Coin Events

	cctalk note processing
	Fault Events
	Note Events

	cctalk hopper processing
	ID-003 note processing
	Fault Events

	CCNet note processing
	Fault Events

	EBDS (SC/SCR) note processing
	Fault Events

	BCR / CR10x Fault Processing
	CLS Fault Processing
	F53/F56 Fault Processing

	Firmware reprogramming
	Command Line Options
	Limitations

	Milan / Paylink Driver Program Configuration
	Driver Parameters
	Multiple Paylink Unit Support.
	Unit Identification

	Operating modes
	External Paylink Peripheral Specification
	The Configuration File
	DRIVER Details
	SYSTEM Details
	PROTOCOL Details
	CCTALK Device Definition
	CCNet Device Definition
	MDB Device Definition
	ID003 Protocol
	EBDS Protocol
	MEIBNR Protocol
	TFLEX | T-FLEX Protocol
	CX25 Protocol
	CLS Protocol
	Gen2 Protocol
	F56 Protocol
	MFS Protocol
	Cassettes
	Original Paylink Definition.

	Disclaimer

